A low-order discontinuous Petrov–Galerkin method for the Stokes equations

被引:0
|
作者
Carsten Carstensen
Sophie Puttkammer
机构
[1] Humboldt-Universität zu Berlin,Department of Mathematics
来源
Numerische Mathematik | 2018年 / 140卷
关键词
Stokes; Discontinuous Petrov Galerkin; Low-order discretization; A priori; A posteriori; Adaptive mesh refinement; 65N12; 65N15; 65N30; 65Y05; 65Y20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces a low-order discontinuous Petrov-Galerkin (dPG) finite element method (FEM) for the Stokes equations. The ultra-weak formulation utilizes piecewise constant and affine ansatz functions and piecewise affine and discontinuous lowest-order Raviart–Thomas test search functions. This low-order discretization for the Stokes equations allows for a direct proof of the discrete inf-sup condition with explicit constants. The general framework of Carstensen et al. (SIAM J Numer Anal 52(3):1335–1353, 2014) then implies a complete a priori and a posteriori error analysis of the dPG FEM in the natural norms. Numerical experiments investigate the performance of the method and underline its quasi-optimal convergence.
引用
收藏
页码:1 / 34
页数:33
相关论文
共 50 条