Critical extreme points of the 2-edge connected spanning subgraph polytope

被引:0
|
作者
Jean Fonlupt
A. Ridha Mahjoub
机构
[1] Université Pierre et Marie Curie,Équipe Combinatoire, UFR 921
[2] Université Blaise Pascal Clermont II,LIMOS, CNRS UMR 6158
[3] Complexe Scientifique des Cézeaux,undefined
来源
Mathematical Programming | 2006年 / 105卷
关键词
Polytope; Cut; 2-edge connected graph; Critical extreme point; 90B10; 90C27; 90C57;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the extreme points of the polytope P(G), the linear relaxation of the 2-edge connected spanning subgraph polytope of a graph G. We introduce a partial ordering on the extreme points of P(G) and give necessary conditions for a non-integer extreme point of P(G) to be minimal with respect to that ordering. We show that, if [inline-graphic not available: see fulltext] is a non-integer minimal extreme point of P(G), then G and [inline-graphic not available: see fulltext] can be reduced, by means of some reduction operations, to a graph G' and an extreme point [inline-graphic not available: see fulltext] of P(G') where G' and [inline-graphic not available: see fulltext] satisfy some simple properties. As a consequence we obtain a characterization of the perfectly 2-edge connected graphs, the graphs for which the polytope P(G) is integral.
引用
收藏
页码:289 / 310
页数:21
相关论文
共 50 条