Finite absolute continuity of Gaussian measures on infinite-dimensional spaces

被引:0
|
作者
G. V. Ryabov
机构
[1] “Kiev Polytechnic Institute” Ukrainian National Technical University,
来源
关键词
Hilbert Space; Probability Measure; Orthonormal Basis; Product Measure; Gaussian Measure;
D O I
暂无
中图分类号
学科分类号
摘要
We study the notion of finite absolute continuity for measures on infinite-dimensional spaces. For Gaussian product measures on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{\infty}$\end{document} and Gaussian measures on a Hilbert space, we establish criteria for finite absolute continuity. We consider cases where the condition of finite absolute continuity of Gaussian measures is equivalent to the condition of their equivalence.
引用
收藏
页码:1592 / 1604
页数:12
相关论文
共 50 条