New approaches to multi-objective optimization

被引:0
|
作者
Fabrizio Grandoni
R. Ravi
Mohit Singh
Rico Zenklusen
机构
[1] University of Italian Switzerland,IDSIA
[2] Carnegie Mellon University,Tepper School of Business
[3] McGill University,School of Computer Science
[4] ETH,Institute for Operations Research (IFOR), Department of Mathematics
来源
Mathematical Programming | 2014年 / 146卷
关键词
Multi-objective optimization; Multi-budgeted optimization; Approximation algorithms; Combinatorial optimization; 90C29; 90C27;
D O I
暂无
中图分类号
学科分类号
摘要
A natural way to deal with multiple, partially conflicting objectives is turning all the objectives but one into budget constraints. Many classical optimization problems, such as maximum spanning tree and forest, shortest path, maximum weight (perfect) matching, maximum weight independent set (basis) in a matroid or in the intersection of two matroids, become NP-hard even with one budget constraint. Still, for most of these problems efficient deterministic and randomized approximation schemes are known. Not much is known however about the case of two or more budgets: filling this gap, at least partially, is the main goal of this paper. In more detail, we obtain the following main results: Using iterative rounding for the first time in multi-objective optimization, we obtain multi-criteria PTASs (which slightly violate the budget constraints) for spanning tree, matroid basis, and bipartite matching with k=O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=O(1)$$\end{document} budget constraints. We present a simple mechanism to transform multi-criteria approximation schemes into pure approximation schemes for problems whose feasible solutions define an independence system. This gives improved algorithms for several problems. In particular, this mechanism can be applied to the above bipartite matching algorithm, hence obtaining a pure PTAS. We show that points in low-dimensional faces of any matroid polytope are almost integral, an interesting result on its own. This gives a deterministic approximation scheme for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-budgeted matroid independent set. We present a deterministic approximation scheme for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-budgeted matching (in general graphs), where k=O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=O(1)$$\end{document}. Interestingly, to show that our procedure works, we rely on a non-constructive result by Stromquist and Woodall, which is based on the Ham Sandwich Theorem.
引用
收藏
页码:525 / 554
页数:29
相关论文
共 50 条
  • [1] New approaches to multi-objective optimization
    Grandoni, Fabrizio
    Ravi, R.
    Singh, Mohit
    Zenklusen, Rico
    [J]. MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) : 525 - 554
  • [2] A new hybrid memetic multi-objective optimization algorithm for multi-objective optimization
    Luo, Jianping
    Yang, Yun
    Liu, Qiqi
    Li, Xia
    Chen, Minrong
    Gao, Kaizhou
    [J]. INFORMATION SCIENCES, 2018, 448 : 164 - 186
  • [3] Multi-objective approaches in a single-objective optimization environment
    Watanabe, S
    Sakakibara, K
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 1714 - 1721
  • [4] Parallel multi-objective optimization approaches for protein encoding
    Gonzalez-Sanchez, Belen
    Vega-Rodriguez, Miguel A.
    Santander-Jimenez, Sergio
    [J]. JOURNAL OF SUPERCOMPUTING, 2022, 78 (04): : 5118 - 5148
  • [5] Comparison of Constraint Handling Approaches in Multi-objective Optimization
    Chhipa, Rohan Hemansu
    Helbig, Marde
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 345 - 362
  • [6] Parallel multi-objective optimization approaches for protein encoding
    Belen Gonzalez-Sanchez
    Miguel A. Vega-Rodríguez
    Sergio Santander-Jiménez
    [J]. The Journal of Supercomputing, 2022, 78 : 5118 - 5148
  • [7] Multi-objective Optimization with Uncertainty: Probabilistic and Fuzzy Approaches
    Das, Sanjoy
    Chowdhury, Sohini Roy
    Panigrahi, Bijaya K.
    Pattnaik, Shyam
    Das, Swagatam
    [J]. 2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 1286 - 1289
  • [8] Multi-Objective Integer Programming Approaches for Solving Optimal Feature Selection Problem A New Perspective on Multi-Objective Optimization Problems in SBSE
    Xue, Yinxing
    Li, Yan-Fu
    [J]. PROCEEDINGS 2018 IEEE/ACM 40TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), 2018, : 1231 - 1242
  • [9] An new evolutionary multi-objective optimization algorithm
    Mu, SJ
    Su, HY
    Chu, J
    Wang, YX
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 914 - 920
  • [10] A New Method for Multi-Objective Optimization Problem
    Jiang Hong
    Yang Meng-fei
    Zhang Shao-lin
    Wang Ruo-chuan
    [J]. 2013 IEEE 4TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC), 2014, : 209 - 212