Fix non-negative integers r, e, m, g, s such that r ≥ 3, 0 ≤ m < r, e > 0, g + s ≤ er + max{0, m − 1} + 2, g ≤ (e − 1)r + max{0,m − 1} and 0 ≤ s ≤ er + 2. Set d := er + m. Fix any \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$S \subset {\bf P}^{r}$$
\end{document} such that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\sharp(S) = s$$
\end{document} and S is in linearly general position. Fix an ordering of the points P1, . . . , Ps of S. Here we prove the existence of an irreducible family Γ of smooth, non-degenerate and connected curves \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$X \subset {\bf P}^{r}$$
\end{document} with degree d and genus g, all of them containing S and such that the induced map \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\eta : \Gamma \rightarrow {\mathcal{M}}_{g, s}$$
\end{document} is dominant.