Dominant Families of Pointed Curves in Projective Spaces

被引:0
|
作者
Edoardo Ballico
机构
[1] University of Trento,Dept. of Mathematics
来源
Results in Mathematics | 2007年 / 50卷
关键词
14H50; Pointed curve; curve in projective space; moduli of pointed curves;
D O I
暂无
中图分类号
学科分类号
摘要
Fix non-negative integers r, e, m, g, s such that r ≥ 3, 0 ≤ m < r, e > 0, g + s ≤ er + max{0, m − 1} + 2, g ≤ (e − 1)r + max{0,m − 1} and 0 ≤ s ≤ er + 2. Set d := er + m. Fix any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$S \subset {\bf P}^{r}$$ \end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sharp(S) = s$$ \end{document} and S is in linearly general position. Fix an ordering of the points P1, . . . , Ps of S. Here we prove the existence of an irreducible family Γ of smooth, non-degenerate and connected curves \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$X \subset {\bf P}^{r}$$ \end{document} with degree d and genus g, all of them containing S and such that the induced map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\eta : \Gamma \rightarrow {\mathcal{M}}_{g, s}$$ \end{document} is dominant.
引用
收藏
页码:169 / 172
页数:3
相关论文
共 50 条