Uniqueness of Derivatives and Shifts of Meromorphic Functions

被引:0
|
作者
Shengjiang Chen
Aizhu Xu
机构
[1] Ningde Normal University,Department of Mathematics
关键词
Meromorphic function; Derivative; Shift; Uniqueness; 30D35; 39A10;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, some uniqueness theorems about meromorphic functions f(z) concerning their derivatives f′(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(z)$$\end{document} and shifts f(z+c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z+c)$$\end{document} with three CM sharing values have been obtained. In this paper, we continue to study this topic. We consider not only high order derivatives instead of just f′(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(z)$$\end{document}, but also IM sharing value instead of CM sharing value. In fact, we mainly prove that for a non-constant meromorphic function f(z) of hyper order strictly less than 1, if f(k)(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{(k)}(z)$$\end{document} and f(z+c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z+c)$$\end{document} share 0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0,\infty $$\end{document} CM and 1 IM, then f(k)(z)≡f(z+c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{(k)}(z)\equiv f(z+c)$$\end{document}, where c is a non-zero finite complex number. Our main theorem generalizes and greatly improves the related result due to Qi–Li–Yang. In addition, we give some discussion of this issue and obtain a uniqueness theorem concerning defective values in Sect. 3.
引用
收藏
页码:197 / 205
页数:8
相关论文
共 50 条
  • [1] Uniqueness of Derivatives and Shifts of Meromorphic Functions
    Chen, Shengjiang
    Xu, Aizhu
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022, 22 (02) : 197 - 205
  • [2] Uniqueness of Meromorphic Functions Concerning their Shifts and Derivatives
    Qi, Xiaoguang
    Yang, Lianzhong
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (01) : 159 - 178
  • [3] Uniqueness of Meromorphic Functions Concerning their Shifts and Derivatives
    Xiaoguang Qi
    Lianzhong Yang
    [J]. Computational Methods and Function Theory, 2020, 20 : 159 - 178
  • [4] UNIQUENESS OF MEROMORPHIC FUNCTIONS CONCERNING THE SHIFTS AND DERIVATIVES
    Meng, Chao
    Liu, Gang
    [J]. JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2019, 37 (1-2): : 133 - 148
  • [5] Uniqueness of Meromorphic Functions with Respect to Their Shifts Concerning Derivatives
    Huang, X. H.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2024, 59 (02): : 120 - 137
  • [6] Uniqueness of Meromorphic Functions Concerning Their Derivatives and Shifts with Partially Shared Values
    W.-J. Chen
    Z.-G. Huang
    [J]. Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2022, 57 : 232 - 241
  • [7] Uniqueness of Meromorphic Functions Concerning Their Derivatives and Shifts with Partially Shared Values
    Chen, W-J
    Huang, Z-G
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2022, 57 (04): : 232 - 241
  • [8] On uniqueness of meromorphic functions and their derivatives
    Meng, Chao
    Li, Xu
    [J]. TBILISI MATHEMATICAL JOURNAL, 2020, 13 (02) : 87 - 99
  • [9] Weighted sharing and uniqueness for the shifts of meromorphic functions
    Meng, Chao
    Liu, Gang
    [J]. TBILISI MATHEMATICAL JOURNAL, 2019, 12 (02) : 17 - 27
  • [10] Uniqueness of meromorphic functions sharing values with their shifts
    Heittokangas, J.
    Korhonen, R.
    Laine, I.
    Rieppo, J.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (1-4) : 81 - 92