Cyclic Cohomology for Graded C∗,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*,r}$$\end{document}-algebras and Its Pairings with van Daele K-theory

被引:0
|
作者
Johannes Kellendonk
机构
[1] Univerisité de Lyon,
[2] Université Claude Bernard Lyon 1,undefined
[3] Institute Camille Jordan,undefined
[4] CNRS UMR 5208,undefined
关键词
D O I
10.1007/s00220-019-03452-1
中图分类号
学科分类号
摘要
We consider cycles for graded C∗,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*,\mathfrak {r}}$$\end{document}-algebras (Real C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}$$\end{document}-algebras) which are compatible with the ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-structure and the real structure. Their characters are cyclic cocycles. We define a Connes type pairing between such characters and elements of the van Daele K-groups of the C∗,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*,\mathfrak {r}}$$\end{document}-algebra and its real subalgebra. This pairing vanishes on elements of finite order. We define a second type of pairing between characters and K-group elements which is derived from a unital inclusion of C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras. It is potentially non-trivial on elements of order two and torsion valued. Such torsion valued pairings yield topological invariants for insulators. The two-dimensional Kane–Mele and the three-dimensional Fu–Kane–Mele strong invariant are special cases of torsion valued pairings. We compute the pairings for a simple class of periodic models and establish structural results for two dimensional aperiodic models with odd time reversal invariance.
引用
收藏
页码:467 / 518
页数:51
相关论文
共 50 条