Kantowski-Sachs and Bianchi type models with a general non-canonical scalar field

被引:0
|
作者
T. Singh
R. Chaubey
Ashutosh Singh
机构
[1] Institute of Science,DST
[2] Banaras Hindu University,Centre for Interdisciplinary Mathematical Sciences
[3] Indian Institute of Advanced Study,undefined
来源
Gravitation and Cosmology | 2017年 / 23卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with spatially homogeneous and anisotropic Kantowski-Sachs and Bianchi universes with a general non-canonical scalar field with the Lagrangian L = F(X) − Ω(ϕ), where X=12ϕiϕi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X = \frac{1}{2}{\phi _i}{\phi ^i}$$\end{document}. We discuss a general non-canonical scalar field in three different cosmologies: (i) cosmology with a constant potential, Ω(ϕ) = Ω0 = const, (ii) cosmology with a constant equation-of-state parameter, i.e., γϕ = const, and (iii) cosmology with a constant speed of sound, i.e., cs2 = const. For a constant potential, we have shown that the k-essence Lagrangian and the Lagrangian of the present model are equivalent. Dissipation of anisotropy, when the universe is filled with a general non-canonical scalar field, is investigated. The existence of an average bounce in Kantowski-Sachs and locally rotationally symmetric Bianchi-I and Bianchi-III models is discussed in detail.
引用
收藏
页码:195 / 200
页数:5
相关论文
共 50 条
  • [1] Kantowski-Sachs and Bianchi Type Models with a General Non-Canonical Scalar Field
    Singh, T.
    Chaubey, R.
    Singh, Ashutosh
    [J]. GRAVITATION & COSMOLOGY, 2017, 23 (02): : 195 - 200
  • [2] Qualitative study of Bianchi type-I, III and Kantowski-Sachs cosmological models with scalar field
    Chaubey, Raghavendra
    Raushan, Rakesh
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (10)
  • [3] BIANCHI TYPE-III AND KANTOWSKI-SACHS COSMOLOGICAL MODELS IN LYRA GEOMETRY
    SINGH, T
    SINGH, GP
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1992, 31 (08) : 1433 - 1446
  • [4] Kantowski-Sachs scalar field cosmological models in a modified theory of gravity
    Santhi, M. Vijaya
    Rao, V. U. M.
    Aditya, Y.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2017, 95 (02) : 136 - 144
  • [5] Kantowski-Sachs Einstein-aether scalar field cosmological models
    van den Hoogen, R. J.
    Coley, A. A.
    Alhulaimi, B.
    Mohandas, S.
    Knighton, E.
    O'Neil, S.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (11):
  • [6] COSMOLOGICAL MODELS OF KANTOWSKI-SACHS TYPE
    GOETHALS, M
    [J]. ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1975, 89 (01): : 50 - 62
  • [7] BIANCHI TYPE-III AND KANTOWSKI-SACHS COSMOLOGICAL MODELS IN LYRA GEOMETRY
    SINGH, T
    SINGH, GP
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 1991, 181 (01) : 89 - 101
  • [8] KANTOWSKI-SACHS METRICS WITH SOURCE - A MASSLESS SCALAR FIELD
    XANTHOPOULOS, BC
    ZANNIAS, T
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (04) : 1415 - 1419
  • [9] Kantowski-Sachs Einstein-aether scalar field cosmological models: the sequel
    Mohandas, S.
    van den Hoogen, Rj
    Winters, D.
    Dala, M.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (08):
  • [10] Bounce behaviour in Kantowski-Sachs and Bianchi cosmologies
    Solomons, Deon
    Dunsby, Peter K. S.
    Ellis, George F. R.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (23) : 6585 - 6597