Integrodifference models for persistence in fragmented habitats

被引:0
|
作者
Van Kirk R.W. [1 ,2 ]
Lewis M.A. [1 ]
机构
[1] Department of Mathematics, University of Utah, Salt Lake City
[2] Henry's Fork Foundation, Ashton, ID 83420
基金
美国国家科学基金会;
关键词
Bifurcation Diagram; Integrodifference Equation; Intrinsic Growth Rate; Dispersal Kernel; Population Persistence;
D O I
10.1007/BF02459473
中图分类号
学科分类号
摘要
Integrodifference models of growth and dispersal are analyzed on finite domains to investigate the effects of emigration, local growth dynamics and habitat heterogeneity on population persistence. We derive the bifurcation structure for a range of population dynamics and present an approximation that allows straightforward calculation of the equilibrium populations in terms of local growth dynamics and dispersal success rates. We show how population persistence in a heterogeneous environment depends on the scale of the heterogeneity relative to the organism's characteristic dispersal distance. When organisms tend to disperse only a short distance, population persistence is dominated by local conditions in high quality patches, but when dispersal distance is relatively large, poor quality habitat exerts a greater influence.
引用
收藏
页码:107 / 137
页数:30
相关论文
共 50 条
  • [1] Integrodifference models for persistence in fragmented habitats
    VanKirk, RW
    Lewis, MA
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1997, 59 (01) : 107 - 137
  • [2] Integrodifference models for persistence in temporally varying river environments
    Jacobsen, Jon
    Jin, Yu
    Lewis, Mark A.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 70 (03) : 549 - 590
  • [3] Integrodifference models for persistence in temporally varying river environments
    Jon Jacobsen
    Yu Jin
    Mark A. Lewis
    [J]. Journal of Mathematical Biology, 2015, 70 : 549 - 590
  • [4] An integrodifference model for biological invasions in a periodically fragmented environment
    Kohkichi Kawasaki
    Nakako Shigesada
    [J]. Japan Journal of Industrial and Applied Mathematics, 2007, 24 (1) : 3 - 15
  • [5] Persistence of butterfly populations in fragmented habitats along urban density gradients: motility helps
    Rochat, E.
    Manel, S.
    Deschamps-Cottin, M.
    Widmer, I.
    Joost, S.
    [J]. HEREDITY, 2017, 119 (05) : 328 - 338
  • [6] Persistence of butterfly populations in fragmented habitats along urban density gradients: motility helps
    E Rochat
    S Manel
    M Deschamps-Cottin
    I Widmer
    S Joost
    [J]. Heredity, 2017, 119 : 328 - 338
  • [7] Carabidologists and fragmented habitats
    Thacker, JRM
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 1996, 11 (03) : 103 - 104
  • [8] Hyperdynamism in fragmented habitats
    Laurance, WF
    [J]. JOURNAL OF VEGETATION SCIENCE, 2002, 13 (04) : 595 - 602
  • [9] Grasshoppers in fragmented habitats
    Mabelis, A
    Mekenkamp, E
    [J]. PROCEEDINGS OF THE SECTION EXPERIMENTAL AND APPLIED ENTOMOLOGY OF THE NETHERLANDS ENTOMOLOGICAL SOCIETY (N.E.V.), VOL 7, 1996, 1996, : 151 - 152
  • [10] Extinction risk in fragmented habitats
    Reed, DH
    [J]. ANIMAL CONSERVATION, 2004, 7 : 181 - 191