A New Proof of Gaffney’s Inequality for Differential Forms on Manifolds-with-Boundary: The Variational Approach à La Kozono-Yanagisawa

被引:0
|
作者
Siran Li
机构
[1] Shanghai Jiao Tong University,School of Mathematical Sciences, IMA
来源
Acta Mathematica Scientia | 2022年 / 42卷
关键词
Gaffney’s inequality; differential form; Sobolev spaces on manifolds; Bochner technique; variational approach; 58A10; 58J32;
D O I
暂无
中图分类号
学科分类号
摘要
Let (ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}$$\end{document}, g0) be a compact Riemannian manifold-with-boundary. We present a new proof of the classical Gaffney inequality for differential forms in boundary value spaces over ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}$$\end{document}, via a variational approach à la Kozono-Yanagisawa [Lr-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains, Indiana Univ. Math. J. 58 (2009), 1853–1920], combined with global computations based on the Bochner technique.
引用
收藏
页码:1427 / 1452
页数:25
相关论文
共 2 条