共 2 条
A New Proof of Gaffney’s Inequality for Differential Forms on Manifolds-with-Boundary: The Variational Approach à La Kozono-Yanagisawa
被引:0
|作者:
Siran Li
机构:
[1] Shanghai Jiao Tong University,School of Mathematical Sciences, IMA
来源:
关键词:
Gaffney’s inequality;
differential form;
Sobolev spaces on manifolds;
Bochner technique;
variational approach;
58A10;
58J32;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let (ℳ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\cal M}$$\end{document}, g0) be a compact Riemannian manifold-with-boundary. We present a new proof of the classical Gaffney inequality for differential forms in boundary value spaces over ℳ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\cal M}$$\end{document}, via a variational approach à la Kozono-Yanagisawa [Lr-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains, Indiana Univ. Math. J. 58 (2009), 1853–1920], combined with global computations based on the Bochner technique.
引用
收藏
页码:1427 / 1452
页数:25
相关论文