On a theorem in spline theory

被引:0
|
作者
Yu. V. Kupriyanova
机构
[1] Saratov State University,Faculty of Mathematics
关键词
Hermite spline; cubic element; tetrahedral Hermite polynomials; finite elements;
D O I
暂无
中图分类号
学科分类号
摘要
A Hermite spline of third degree is constructed on a three-dimensional simplex. The deviation of its directional derivatives up to the third order is estimated in angle-free terms. The resulting estimates hold for any tetrahedron irrespective of its geometry.
引用
收藏
页码:195 / 200
页数:5
相关论文
共 50 条
  • [1] On a Theorem in Spline Theory
    Kupriyanova, Yu. V.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (02) : 195 - 200
  • [2] ON THE APPLICATION OF AN OPTIMAL SPLINE SAMPLING THEOREM
    ENGELS, W
    STARK, EL
    VOGT, L
    [J]. SIGNAL PROCESSING, 1988, 14 (03) : 225 - 236
  • [3] SPLINE FUNCTIONS .4. CARDINAL SPLINE ANALOG OF THEOREM OF BROTHERS MARKOV
    RICHARDS, FB
    SCHOENBE.IJ
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1973, 16 (01) : 94 - 102
  • [4] BUDAN-FOURIER THEOREM FOR SPLINE FUNCTIONS
    SCHOENBE.IJ
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A210 - A210
  • [5] THEOREM OF BERNSTEIN TYPE FOR PERIODIC SPLINE FUNCTIONS
    CAVARETT.AS
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A160 - A160
  • [6] The saturation theorem for box spline orthogonal projection
    Beska, M
    Dziedziul, K
    [J]. ADVANCES IN MULTIVARIATE APPROXIMATION, 1999, 107 : 73 - 83
  • [7] A Uniqueness Theorem for Multiple Orthonormal Spline Series
    A. Khachatryan
    [J]. Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2021, 56 : 118 - 127
  • [8] A Uniqueness Theorem for Multiple Orthonormal Spline Series
    Khachatryan, A.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2021, 56 (03): : 118 - 127
  • [9] A Spline Theory of Deep Networks
    Balestriero, Randall
    Baraniuk, Richard G.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [10] INTRODUCTION TO THEORY OF SPLINE FUNCTIONS
    IONESCU, DV
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1970, 21 (1-2): : 21 - &