Hausdorff dimension of limit sets of discrete subgroups of higher rank Lie groups

被引:0
|
作者
Gabriele Link
机构
[1] Universität Karlsruhe,Mathematisches Institut II
来源
关键词
((no keywords)); ((no classification));
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a globally symmetric space of noncompact type, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G = \textrm{Isom}^o (X) $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Gamma \subset G $$\end{document} a discrete subgroup. Introducing an appropriate notion of Hausdorff measure on the geometric boundary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \theta X $$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \theta X $$\end{document}, we prove that for regular boundary points \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \xi \in \theta X $$\end{document} , the Hausdorff dimension of the radial limit set in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G \cdot \xi $$\end{document} is bounded above by the exponential growth rate of the number of orbit points close in direction to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G \cdot \xi \subseteq \theta X $$\end{document}. Furthermore, for Zariski dense discrete groups Γ we construct Γ-invariant densities with support in every G-invariant subset of the limit set and study their properties. For a class of groups which generalises convex cocompact groups in the rank one setting, these densities allow to give a sharp estimate on the Hausdorff dimension of the radial limit set in each subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G \cdot \xi \subseteq \theta X $$\end{document}.
引用
收藏
页码:400 / 432
页数:32
相关论文
共 50 条