Comparison principles for p-Laplace equations with lower order terms

被引:0
|
作者
Tommaso Leonori
Alessio Porretta
Giuseppe Riey
机构
[1] Campus Fuentenueva S/N,Departamento de Análisis Matemático, Facultad de Ciencias
[2] Universidad de Granada,Dipartimento di Matematica
[3] Università di Roma “Tor Vergata”,Dipartimento di Matematica
[4] Università della Calabria,undefined
关键词
Weak comparison principle; Quasilinear degenerate equations; Strong comparison principle; 35J70; 35J92; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove comparison principles for quasilinear elliptic equations whose simplest model is λu-Δpu+H(x,Du)=0x∈Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lambda u -\Delta _p u + H(x,Du)=0 \quad x\in \Omega , \end{aligned}$$\end{document}where Δpu=div(|Du|p-2Du)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _p u = \text { div }(|Du|^{p-2} Du)$$\end{document} is the p-Laplace operator with p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p> 2$$\end{document}, λ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \ge 0$$\end{document}, H(x,ξ):Ω×RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(x,\xi ):\Omega \times \mathbb {R}^{N}\rightarrow \mathbb {R}$$\end{document} is a Carathéodory function and Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^{N}$$\end{document} is a bounded domain, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}. We collect several comparison results for weak sub- and super-solutions under different setting of assumptions and with possibly different methods. A strong comparison result is also proved for more regular solutions.
引用
收藏
页码:877 / 903
页数:26
相关论文
共 50 条