Long-Time Existence for Semi-linear Beam Equations on Irrational Tori

被引:0
|
作者
Joackim Bernier
Roberto Feola
Benoît Grébert
Felice Iandoli
机构
[1] Université de Nantes,Laboratoire de Mathématiques Jean Leray
[2] UMR CNRS 6629,Laboratoire Jacques
[3] Sorbonne Université,Louis Lions
[4] UMR CNRS 7598,undefined
关键词
Lifespan for semi-linear PDEs; Birkhoff normal forms; Modified energy; Irrational torus; 35Q35; 35Q53; 37K55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the semi-linear beam equation on the d dimensional irrational torus with smooth nonlinearity of order n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} with n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} and d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}. If ε≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \ll 1$$\end{document} is the size of the initial datum, we prove that the lifespan Tε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\varepsilon $$\end{document} of solutions is O(ε-A(n-2)-)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon ^{-A(n-2)^-})$$\end{document} where A≡A(d,n)=1+3d-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\equiv A(d,n)= 1+\frac{3}{d-1}$$\end{document} when n is even and A=1+3d-1+max(4-dd-1,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A= 1+\frac{3}{d-1}+\max (\frac{4-d}{d-1},0)$$\end{document} when n is odd. For instance for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document} (quadratic nonlinearity) we obtain Tε=O(ε-6-)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\varepsilon =O(\varepsilon ^{-6^-})$$\end{document}, much better than O(ε-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon ^{-1})$$\end{document}, the time given by the local existence theory. The irrationality of the torus makes the set of differences between two eigenvalues of Δ2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\Delta ^2+1}$$\end{document} accumulate to zero, facilitating the exchange between the high Fourier modes and complicating the control of the solutions over long times. Our result is obtained by combining a Birkhoff normal form step and a modified energy step.
引用
下载
收藏
页码:1363 / 1398
页数:35
相关论文
共 50 条
  • [1] Long-Time Existence for Semi-linear Beam Equations on Irrational Tori
    Bernier, Joackim
    Feola, Roberto
    Grebert, Benoit
    Iandoli, Felice
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (03) : 1363 - 1398
  • [2] Long time existence for the semi-linear beam equation on irrational tori of dimension two
    Imekraz, Rafik
    NONLINEARITY, 2016, 29 (10) : 3067 - 3102
  • [3] Long-time existence for semi-linear Klein-Gordon equations on tori
    Fang, Daoyuan
    Zhang, Qidi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (01) : 151 - 179
  • [4] Long-Time Existence for Semi-Linear Klein-Gordon Equations with Quadratic Potential
    Zhang, Qidi
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (04) : 630 - 668
  • [5] Long-time error estimation for semi-linear parabolic equations
    Sun, T
    Filippova, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 185 (01) : 1 - 18
  • [6] Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds
    Delort, J. -M.
    Szeftel, J.
    AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (05) : 1187 - 1218
  • [7] ON LONG TIME EXISTENCE FOR SMALL SOLUTIONS OF SEMI-LINEAR KLEIN-GORDON EQUATIONS ON THE TORUS
    Delort, J. -M.
    JOURNAL D ANALYSE MATHEMATIQUE, 2009, 107 : 161 - 194
  • [8] On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus
    J.-M. Delort
    Journal d'Analyse Mathématique, 2009, 107 : 161 - 194
  • [9] Long-time stability of the quantum hydrodynamic system on irrational tori
    Feola, Roberto
    Iandoli, Felice
    Murgante, Federico
    MATHEMATICS IN ENGINEERING, 2022, 4 (03):
  • [10] Long-Time Behavior for a Class of Semi-linear Viscoelastic Kirchhoff Beams/Plates
    B. Feng
    M. A. Jorge Silva
    A. H. Caixeta
    Applied Mathematics & Optimization, 2020, 82 : 657 - 686