Computational homogenization of fatigue in additively manufactured microlattice structures

被引:0
|
作者
F. Mozafari
I. Temizer
机构
[1] Bilkent University,Department of Mechanical Engineering
来源
Computational Mechanics | 2023年 / 71卷
关键词
Micromechanics; Additive manufacturing; Microlattice; Microplasticity; Fatigue;
D O I
暂无
中图分类号
学科分类号
摘要
A novel computational approach to predicting fatigue crack initiation life in additively manufactured microlattice structures is proposed based on a recently developed microplasticity-based constitutive theory. The key idea is to use the concept of (micro)plastic dissipation as the driving factor to model fatigue degradation in additively manufactured metallic microlattice. An ad-hoc curve-fitting procedure is proposed to calibrate the introduced material constitutive parameters efficiently. The well-calibrated model is employed to obtain fatigue life predictions for microlattices through a diverse set of RVE-based finite element fatigue simulations. The model’s predictive capabilities are verified by comparing the simulation results with experimental fatigue data reported in the literature. The overall approach constitutes a unified setting for fatigue life prediction of additively manufactured microlattice structures ranging from low- to high-cycle regimes. It is also shown that the model can be applied to technologically relevant microlattices with mathematically-created complex microstructure topologies.
引用
收藏
页码:367 / 384
页数:17
相关论文
共 50 条
  • [1] Computational homogenization of fatigue in additively manufactured microlattice structures
    Mozafari, F.
    Temizer, I
    COMPUTATIONAL MECHANICS, 2023, 71 (02) : 367 - 384
  • [2] Computational homogenization of additively manufactured lightweight structures with multiscale topology optimization
    Kim, Jae-Eun
    Cho, Nak-Kyun
    Park, Keun
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2022, 9 (05) : 1602 - 1615
  • [3] Homogenization of material properties in additively manufactured structures
    Liu, Xingchen
    Shapiro, Vadim
    COMPUTER-AIDED DESIGN, 2016, 78 : 71 - 82
  • [4] A performance metric for additively manufactured microlattice structures under different loading conditions
    Despres, Nathaniel
    Cyr, Edward
    Mohammadi, Mohsen
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2019, 233 (09) : 1814 - 1829
  • [5] A Fatigue Life Approach for Additively Manufactured Structures
    Wagener, Rainer
    Moeller, Benjamin
    Scurria, Matilde
    Bein, Thilo
    TMS 2020 149TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2020, : 127 - 137
  • [6] Influence on the fatigue behavior of additively manufactured aluminum structures
    Wagener, Rainer
    Scurria, Matilde
    Kaufmann, Heinz
    Melz, Tobias
    FATIGUE DESIGN 2019, INTERNATIONAL CONFERENCE ON FATIGUE DESIGN, 8TH EDITION, 2019, 19 : 380 - 387
  • [7] High strength WE43 microlattice structures additively manufactured by laser powder bed fusion
    Hyer, Holden
    Zhou, Le
    Liu, Qingyang
    Wu, Dazhong
    Song, Shutao
    Bai, Yuanli
    McWilliams, Brandon
    Cho, Kyu
    Sohn, Yongho
    MATERIALIA, 2021, 16
  • [8] Crush performance of additively manufactured maraging steel microlattice reinforced plates
    Tallon, Joey
    Cyr, Edward
    Lloyd, Alan
    Mohammadi, Mohsen
    ENGINEERING FAILURE ANALYSIS, 2020, 108
  • [9] Homogenization-based optimum design of additively manufactured Voronoi cellular structures
    Quang Thang Do
    Cong Hong Phong Nguyen
    Choi, Young
    ADDITIVE MANUFACTURING, 2021, 45
  • [10] Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials
    Hedayati, R.
    Hosseini-Toudeshky, H.
    Sadighi, M.
    Mohammadi-Aghdam, M.
    Zadpoor, A. A.
    INTERNATIONAL JOURNAL OF FATIGUE, 2016, 84 : 67 - 79