Uniqueness of constant scalar curvature Kähler metrics with cone singularities. I: reductivity

被引:0
|
作者
Long Li
Kai Zheng
机构
[1] McMaster University,Department of Mathematics and Statistics
[2] University of Warwick,Mathematics Institute
来源
Mathematische Annalen | 2019年 / 373卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to investigate uniqueness of conic constant scalar curvature Kähler (cscK) metrics, when the cone angle is less than π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}. We introduce a new Hölder space called C4,α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{4,\alpha ,\beta }$$\end{document} to study the regularities of this fourth order elliptic equation, and prove that any C2,α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{2,\alpha ,\beta }$$\end{document} conic cscK metric is indeed of class C4,α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{4,\alpha ,\beta }$$\end{document}. Finally, the reductivity is established by a careful study of the conic Lichnerowicz operator.
引用
收藏
页码:679 / 718
页数:39
相关论文
共 50 条