Self-intersections of closed parametrized minimal surfaces in generic Riemannian manifolds

被引:0
|
作者
John Douglas Moore
机构
[1] University of California,Department of Mathematics
来源
关键词
Parametrized minimal surfaces; Generic properties of minimal surfaces; Representing homology classes by imbedded minimal surfaces; Infinite-dimensional manifold theory; Topology of four-manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
This article shows that for generic choice of Riemannian metric on a compact oriented manifold M of dimension four, the tangent planes at any self-intersection p∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in M$$\end{document} of any prime closed parametrized minimal surface in M are not simultaneously complex for any orthogonal complex structure on M at p. This implies via geometric measure theory that H2(M;Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2(M;{{\mathbb {Z}}})$$\end{document} is generated by homology classes that are represented by oriented imbedded minimal surfaces.
引用
收藏
页码:157 / 165
页数:8
相关论文
共 50 条