Consider equipping an alphabet A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {A}$$\end{document} with a group action which partitions the set of words into equivalence classes which we call patterns. We answer standard questions for Penney’s game on patterns and show non-transitivity for the game on patterns as the length of the pattern tends to infinity. We also analyze bounds on the pattern-based Conway leading number and expected wait time, and further explore the game under the cyclic and symmetric group actions.
机构:
Univ Basel, Fac Business & Econ, Peter Merian Weg 6, CH-4002 Basel, SwitzerlandUniv Basel, Fac Business & Econ, Peter Merian Weg 6, CH-4002 Basel, Switzerland
Noldeke, Georg
Pena, Jorge
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse 1 Capitole, Inst Adv Study Toulouse, 1 Esplanade Univ, Toulouse 31080 6, FranceUniv Basel, Fac Business & Econ, Peter Merian Weg 6, CH-4002 Basel, Switzerland
机构:
Nagoya Univ, Grad Sch Environm Studies, Chikusa Ku, Nagoya, Aichi 4648601, JapanNagoya Univ, Grad Sch Environm Studies, Chikusa Ku, Nagoya, Aichi 4648601, Japan
Hirose, Y
Taresawa, Y
论文数: 0引用数: 0
h-index: 0
机构:Nagoya Univ, Grad Sch Environm Studies, Chikusa Ku, Nagoya, Aichi 4648601, Japan
Taresawa, Y
Okuda, T
论文数: 0引用数: 0
h-index: 0
机构:Nagoya Univ, Grad Sch Environm Studies, Chikusa Ku, Nagoya, Aichi 4648601, Japan