Weighted shift operators, orthogonal polynomials and chain sequences

被引:0
|
作者
Rupert Lasser
Josef Obermaier
机构
[1] Munich University of Technology,
[2] Centre of Mathematics,undefined
[3] Helmholtz Zentrum München,undefined
[4] German Research Center for Environmental Health,undefined
[5] Scientific Computing Research Unit,undefined
来源
关键词
47B36; 47B37; 33C45; weighted shift operators; Jacobi operators; chain sequences; orthogonal polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to use chain sequences to study spectral properties of weighted shift operators A and of tridiagonal operators Re A. Characterizations of chain sequences and relations to Haar sequences are derived. We use these results to compare the spectral radius, the numerical radius and the norm of A and Re A. As an example we study orthogonal polynomials defined by a recursion formula with almost constant coefficients.
引用
收藏
页码:331 / 342
页数:11
相关论文
共 50 条
  • [1] Weighted shift operators, orthogonal polynomials and chain sequences
    Lasser, Rupert
    Obermaier, Josef
    ACTA SCIENTIARUM MATHEMATICARUM, 2020, 86 (1-2): : 331 - 342
  • [2] CHAIN SEQUENCES AND COMPACT PERTURBATIONS OF ORTHOGONAL POLYNOMIALS
    SZWARC, R
    MATHEMATISCHE ZEITSCHRIFT, 1994, 217 (01) : 57 - 71
  • [3] Chain sequences, orthogonal polynomials, and Jacobi matrices
    Szwarc, R
    JOURNAL OF APPROXIMATION THEORY, 1998, 92 (01) : 59 - 73
  • [4] Orthogonal Polynomials Associated with Complementary Chain Sequences
    Behera, Kiran Kumar
    Sri Ranga, A.
    Swaminathan, A.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [5] Orthogonal polynomials on the unit circle and chain sequences
    Costa, M. S.
    Felix, H. M.
    Ranga, A. Sri
    JOURNAL OF APPROXIMATION THEORY, 2013, 173 : 14 - 32
  • [6] Chain sequences and symmetric generalized orthogonal polynomials
    Bracciali, CF
    Dimitrov, DK
    Ranga, AS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 143 (01) : 95 - 106
  • [7] The μ-permanent of a tridiagonal matrix, orthogonal polynomials, and chain sequences
    da Fonseca, C. M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (05) : 1258 - 1266
  • [8] NUMERICAL RADII OF WEIGHTED SHIFT OPERATORS USING DETERMINANTAL POLYNOMIALS
    Chakraborty, Bikshan
    Ojha, Sarita
    Birbonshi, Riddhick
    OPERATORS AND MATRICES, 2022, 16 (04): : 1155 - 1174
  • [9] Continuity of Weighted Operators, Muckenhoupt Ap Weights, and Steklov Problem for Orthogonal Polynomials
    Alexis, Michel
    Aptekarev, Alexander
    Denisov, Sergey
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (08) : 5935 - 5972
  • [10] CONVERGENT SEQUENCES OF ORTHOGONAL POLYNOMIALS
    CHIHARA, TS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 38 (02) : 335 - &