Correction to: Efficient feature selection using shrinkage estimators

被引:0
|
作者
Konstantinos Sechidis
Laura Azzimonti
Adam Pocock
Giorgio Corani
James Weatherall
Gavin Brown
机构
[1] University of Manchester,School of Computer Science
[2] Istituto Dalle Molle di studi sull’ Intelligenza Artificiale (IDSIA),Advanced Analytics Centre, Global Medicines Development
[3] Oracle Labs,undefined
[4] AstraZeneca,undefined
来源
Machine Learning | 2020年 / 109卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
There was a mistake in the proof of the optimal shrinkage intensity for our estimator presented in Section 3.1.
引用
收藏
页码:1565 / 1567
页数:2
相关论文
共 50 条
  • [1] Efficient feature selection using shrinkage estimators
    Konstantinos Sechidis
    Laura Azzimonti
    Adam Pocock
    Giorgio Corani
    James Weatherall
    Gavin Brown
    Machine Learning, 2019, 108 : 1261 - 1286
  • [2] Efficient feature selection using shrinkage estimators
    Sechidis, Konstantinos
    Azzimonti, Laura
    Pocock, Adam
    Corani, Giorgio
    Weatherall, James
    Brown, Gavin
    MACHINE LEARNING, 2019, 108 (8-9) : 1261 - 1286
  • [3] Efficient feature selection using shrinkage estimators (vol 108, pg 1261, 2019)
    Sechidis, Konstantinos
    Azzimonti, Laura
    Pocock, Adam
    Corani, Giorgio
    Weatherall, James
    Brown, Gavin
    MACHINE LEARNING, 2020, 109 (08) : 1565 - 1567
  • [4] Feature selection with missing data using mutual information estimators
    Doquire, Gauthier
    Verleysen, Michel
    NEUROCOMPUTING, 2012, 90 : 3 - 11
  • [5] Feature selection and feature learning in arousal dimension of music emotion by using shrinkage methods
    Jiang Long Zhang
    Xiang Lin Huang
    Li Fang Yang
    Ye Xu
    Shu Tao Sun
    Multimedia Systems, 2017, 23 : 251 - 264
  • [6] Feature selection and feature learning in arousal dimension of music emotion by using shrinkage methods
    Zhang, Jiang Long
    Huang, Xiang Lin
    Yang, Li Fang
    Xu, Ye
    Sun, Shu Tao
    MULTIMEDIA SYSTEMS, 2017, 23 (02) : 251 - 264
  • [7] Correction to: An efficient feature subset selection approach for machine learning
    Thomas Rincy N
    Roopam Gupta
    Multimedia Tools and Applications, 2022, 81 : 7519 - 7519
  • [8] Size matters: Optimal calibration of shrinkage estimators for portfolio selection
    DeMiguel, Victor
    Martin-Utrera, Alberto
    Nogales, Francisco J.
    JOURNAL OF BANKING & FINANCE, 2013, 37 (08) : 3018 - 3034
  • [9] Efficient Estimation and Validation of Shrinkage Estimators in Big Data Analytics
    du Plessis, Salomi
    Arashi, Mohammad
    Maribe, Gaonyalelwe
    Millard, Salomon M.
    MATHEMATICS, 2023, 11 (22)
  • [10] Efficient Feature Ranking and Selection Using Statistical Moments
    Hochma, Yael
    Felendler, Yuval
    Last, Mark
    IEEE ACCESS, 2024, 12 : 105573 - 105587