Large Sets of Nearly Orthogonal Vectors

被引:0
|
作者
Noga Alon
Mario Szegedy
机构
[1]  Department of Mathematics,
[2] Raymond and Beverly Sackler Faculty of Exact Sciences,undefined
[3] Tel Aviv University,undefined
[4] Tel Aviv 69978,undefined
[5] Israel. email: noga@math.tau.ac.il,undefined
[6]  AT & T Bell Labs,undefined
[7] Murray Hill,undefined
[8] NJ 07974,undefined
[9] USA. email: ms@research.att.com,undefined
关键词
Positive Integer; Nonzero Vector; Orthogonal Vector; Orthogonal Pair;
D O I
10.1007/PL00021187
中图分类号
学科分类号
摘要
It is shown that there is an absolute positive constant δ>0, so that for all positive integers k and d , there are sets of at least dδlog2(k+2)/log2log2(k+2) nonzero vectors in Rd, in which any k+1 members contain an orthogonal pair. This settles a problem of Füredi and Stanley.
引用
收藏
页码:1 / 4
页数:3
相关论文
共 50 条
  • [1] Large sets of nearly orthogonal vectors
    Alon, N
    Szegedy, M
    GRAPHS AND COMBINATORICS, 1999, 15 (01) : 1 - 4
  • [2] Orthogonalising nearly orthogonal axis sets
    Owens, WH
    COMPUTERS & GEOSCIENCES, 2005, 31 (06) : 792 - 796
  • [3] Extendable orthogonal sets of integral vectors
    Chamizo, Fernando
    Jimenez-Urroz, Jorge
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (04)
  • [4] SETS OF VECTORS WITH MANY ORTHOGONAL PAIRS
    FUREDI, Z
    STANLEY, R
    GRAPHS AND COMBINATORICS, 1992, 8 (04) : 391 - 394
  • [5] Extendable orthogonal sets of integral vectors
    Fernando Chamizo
    Jorge Jiménez-Urroz
    Research in the Mathematical Sciences, 2022, 9
  • [6] NEARLY ORTHOGONAL VECTORS AND SMALL ANTIPODAL SPHERICAL CODES
    Bukh, B.
    Cox, C.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 511 - 514
  • [7] Nearly orthogonal vectors and small antipodal spherical codes
    Boris Bukh
    Christopher Cox
    Israel Journal of Mathematics, 2020, 238 : 359 - 388
  • [8] Nearly orthogonal vectors and small antipodal spherical codes
    Bukh, Boris
    Cox, Christopher
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 238 (01) : 359 - 388
  • [9] Larger nearly orthogonal sets over finite fields
    Haviv, Ishay
    Mattheus, Sam
    Milojevic, Aleksa
    Wigderson, Yuval
    DISCRETE MATHEMATICS, 2025, 384 (04)
  • [10] AN ALGORITHM TO IMPROVE NEARLY ORTHONORMAL SETS OF VECTORS ON A VECTOR PROCESSOR
    PHILIPPE, B
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1987, 8 (03): : 396 - 403