Viscosity solutions of Hamilton-Jacobi equations, and asymptotics for Hamiltonian systems

被引:0
|
作者
Diogo Aguiar Gomes
机构
[1] Institute of Advanced Study,
[2] Princeton University,undefined
[3] Princeton,undefined
[4] NJ 08540,undefined
[5] USA (e-mail: dgomes@math.ist.utl.pt) ,undefined
[6] Universidade Tecnica Lisboa,undefined
[7] Instituto Superior Tecnico (IST),undefined
[8] Departamento de Matematica,undefined
[9] Avenida Rovisco Pais,undefined
[10] 1049-001 Lisboa,undefined
[11] Portugal ,undefined
关键词
Differential Equation; Dynamical System; Partial Differential Equation; General Condition; Asymptotic Behavior;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we apply the theory of viscosity solutions of Hamilton-Jacobi equations to understand the structure of certain Hamiltonian flows. In particular, we describe the asymptotic behavior of minimizing orbits, and prove analogs of the classical Hamilton-Jacobi integrability theory that hold under very general conditions. Then, combining partial differential equations techniques with dynamical systems ideas (Mather measures, ergodicity) we study solutions of time-independent Hamilton-Jacobi equation, namely, uniform continuity, difference quotients and non-uniqueness.
引用
收藏
页码:345 / 357
页数:12
相关论文
共 50 条