On the partition dimension of two-component graphs

被引:0
|
作者
D O Haryeni
E T Baskoro
S W Saputro
M Bača
A Semaničová-Feňovčíková
机构
[1] Institut Teknologi Bandung (ITB),Combinatorial Mathematics Research Group, Department of Mathematics, Faculty of Mathematics and Natural Sciences
[2] Technical University,Department of Applied Mathematics and Informatics
来源
关键词
Partition dimension; disconnected graph; component; 05C12; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we continue investigating the partition dimension for disconnected graphs. We determine the partition dimension for some classes of disconnected graphs G consisting of two components. If G=G1∪G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=G_1 \cup G_2$$\end{document}, then we give the bounds of the partition dimension of G for G1=Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1 = P_n$$\end{document} or G1=Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1=C_n$$\end{document} and also for pd(G1)=pd(G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pd(G_1)=pd(G_2)$$\end{document}.
引用
收藏
页码:755 / 767
页数:12
相关论文
共 50 条
  • [1] On the partition dimension of two-component graphs
    Haryeni, D. O.
    Baskoro, E. T.
    Saputro, S. W.
    Baca, M.
    Semanicova-Fenovcikova, A.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (05): : 755 - 767
  • [2] Cosmology in one dimension: A two-component model
    Shiozawa, Yui
    Miller, Bruce N.
    CHAOS SOLITONS & FRACTALS, 2016, 91 : 86 - 91
  • [3] Disordered impenetrable two-component fermions in one dimension
    V. Kurlov, D.
    Bahovadinov, M. S.
    Matveenko, S. I.
    Fedorov, A. K.
    Gritsev, V.
    Altshuler, B. L.
    V. Shlyapnikov, G.
    PHYSICAL REVIEW B, 2023, 107 (18)
  • [4] Binding between two-component bosons in one dimension
    Tempfli, Emmerich
    Zoellner, Sascha
    Schmelcher, Peter
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [5] Trapped interacting two-component bosons in one dimension
    Gu, SJ
    Li, YQ
    Ying, ZJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42): : 8995 - 9007
  • [6] Numerical invariants for two-component virtual spatial graphs
    Negi, Komal
    Prabhakar, Madeti
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2023,
  • [7] ON THE PARTITION DIMENSION OF INFINITE GRAPHS
    Imran, Muhammad
    Vetrik, Tomas
    MATHEMATICAL REPORTS, 2022, 24 (03): : 433 - 442
  • [8] The partition dimension of circulant graphs
    Maritz, Elizabeth C. M.
    Vetrik, Tomas
    QUAESTIONES MATHEMATICAE, 2018, 41 (01) : 49 - 63
  • [9] On the Partition Dimension of Circulant Graphs
    Grigorious, Cyriac (cyriac.grigorious@gmail.com), 1600, Oxford University Press (60):
  • [10] The edge partition dimension of graphs
    Kuziak, Dorota
    Maritz, Elizabeth
    Vetrik, Tomas
    Yero, Ismael G.
    DISCRETE MATHEMATICS LETTERS, 2023, 12 : 34 - 39