On boundary values of solutions of the dirichlet problem for second order elliptic equation

被引:0
|
作者
V. Zh. Dumanyan
机构
[1] Yerevan State University,
关键词
Elliptic equations; Dirichlet problem; behavior near the boundary; boundary value; Dirichlet integral; 35B60; 35D99; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
The paper suggests some conditions on the lower order terms, which provide that the solution of the Dirichlet problem for the general elliptic equation of the second order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{gathered} - \sum\limits_{i,j = 1}^n {\left( {a_{i j} \left( x \right)u_{x_i } } \right)_{x_j } + } \sum\limits_{i = 1}^n {b_i \left( x \right)u_{x_i } - } \sum\limits_{i = 1}^n {\left( {c_i \left( x \right)u} \right)_{x_i } + d\left( x \right)u = f\left( x \right) - divF\left( x \right), x \in Q,} \hfill \\ \left. u \right|_{\partial Q} = u_0 \in L_2 \left( {\partial Q} \right) \hfill \\ \end{gathered} $$\end{document}, possesses the property of (n − 1)-dimensional continuity, i.e. is from A. K. Gushchin’s space Cn−1(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar Q $$\end{document}), and the boundary function u0 is the L2-limit of the solution traces on some surfaces from a rather wide class, which are not necessarily “parallel” to the boundary.
引用
收藏
页码:26 / 42
页数:16
相关论文
共 50 条