Classification and existence of positive solutions of fourth-order nonlinear difference equations

被引:0
|
作者
J. V. Manojlović
机构
[1] University of Niš,Department of Mathematics and Computer Science, Faculty of Science and Mathematics
来源
关键词
nonlinear difference equation; nonoscillatory solution; positive solutions; asymptotic behavior; classification of solutions; oscillation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a class of fourth-order nonlinear difference equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Omega)\qquad\qquad\qquad\qquad\qquad\qquad \mathit{\Delta}^2 \left( {p_n \left( {\mathit{\Delta}^2 y_n } \right)^{\alpha } } \right) + q_n y_{n + 3}^{\beta } = 0,\quad n \in \mathbb{N}, $$\end{document}where α and β are the ratios of odd positive integers, and {pn} and {qn} are positive real sequences defined for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n \in \mathbb{N}\left( {n_0 } \right) $$\end{document} satisfying the condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum\limits_{{n = n_0 }}^{\infty } {n\left( {\frac{n}{{p_n }}} \right)^{{{1 \mathord{\left/ {\vphantom {1 \alpha }} \right. } \alpha }}} < \infty .} $$\end{document} We classify the nonoscillatory solutions of (Ω) and establish necessary and/or sufficient conditions for the existence of nonoscillatory solutions with specific asymptotic behavior.
引用
收藏
相关论文
共 50 条
  • [1] CLASSIFICATION AND EXISTENCE OF POSITIVE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENCE EQUATIONS
    Manojlovic, J. V.
    LITHUANIAN MATHEMATICAL JOURNAL, 2009, 49 (01) : 71 - 92
  • [2] On the existence of positive solutions of fourth-order difference equations
    He, ZM
    Yu, JS
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (01) : 139 - 148
  • [3] Existence of positive solution for nonlinear fourth-order difference equations
    Ma, Ruyun
    Xu, Youji
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (12) : 3770 - 3777
  • [4] Existence of positive solutions for BVPs of fourth-order difference equations
    Zhang, BG
    Kong, LJ
    Sun, YJ
    Deng, XH
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 131 (2-3) : 583 - 591
  • [5] Existence of periodic solutions of fourth-order nonlinear difference equations
    Haiping Shi
    Xia Liu
    Yuanbiao Zhang
    Xiaoqing Deng
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 : 811 - 825
  • [6] Existence of periodic solutions of fourth-order nonlinear difference equations
    Shi, Haiping
    Liu, Xia
    Zhang, Yuanbiao
    Deng, Xiaoqing
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (02) : 811 - 825
  • [7] ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENCE EQUATIONS
    Agarwal, R. P.
    Manojlovic, J. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2008, 60 (01) : 6 - 28
  • [8] Asymptotic behavior of positive solutions of fourth-order nonlinear difference equations
    R. P. Agarwal
    J. V. Manojlović
    Ukrainian Mathematical Journal, 2008, 60
  • [9] Existence of periodic solutions for fourth-order difference equations
    Cai, XC
    Yu, JS
    Guo, ZM
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (1-2) : 49 - 55
  • [10] Existence theorems of periodic solutions for fourth-order nonlinear functional difference equations
    Liu X.
    Zhang Y.
    Shi H.
    Journal of Applied Mathematics and Computing, 2013, 42 (1-2) : 51 - 67