Dirichlet type problems for Dunkl-Poisson equations

被引:0
|
作者
Hongfen Yuan
机构
[1] Hebei University of Engineering,College of Science
来源
关键词
Dirichlet problem; Dunkl-Poisson equation; Dunkl-Laplace equation; Clifford analysis; 30G35; 35J05; 58C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using the intertwine relations of differential operators, we study one representation of real analytic functions by Dunkl-harmonic functions, which is a generalization of the well-known Almansi formula. As an application of the representation, we construct a solution of the Dunkl-Poisson equations in Clifford analysis. Then we investigate solutions of homogeneous and inhomogeneous Dirichlet type problems for Dunkl-Poisson’s equation, and inhomogeneous Dirichlet problems for Dunkl-Laplace’s equation.
引用
收藏
相关论文
共 50 条
  • [1] Dirichlet type problems for Dunkl-Poisson equations
    Yuan, Hongfen
    [J]. BOUNDARY VALUE PROBLEMS, 2016,
  • [2] Dunkl-Poisson Equation and Related Equations in Superspace
    Yuan, Hong Fen
    Karachik, Valery V.
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2015, 20 (06) : 768 - 781
  • [3] Dirichlet and Neumann Boundary Value Problems for Dunkl Polyharmonic Equations
    Yuan, Hongfen
    Karachik, Valery
    [J]. MATHEMATICS, 2023, 11 (09)
  • [4] DIRICHLET PROBLEM OF POISSON EQUATIONS AND VARIATIONAL PRINCIPLE ON A TYPE OF FRACTAL SETS
    Wu, Yipeng
    Yao, Kui
    Mu, Lei
    Chen, Zhilong
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (05)
  • [5] Dirichlet-Type Problems for Certain Beltrami Equations
    Bory-Reyes, J.
    Barseghyan, D.
    Schneider, B.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (03)
  • [6] Dirichlet-Type Problems for Certain Beltrami Equations
    J. Bory-Reyes
    D. Barseghyan
    B. Schneider
    [J]. Mediterranean Journal of Mathematics, 2021, 18
  • [7] DIRICHLET PROBLEM OF POISSON EQUATIONS ON A TYPE OF HIGHER-DIMENSIONAL FRACTAL SETS
    Zhu, Le
    Wu, Yipeng
    Chen, Zhilong
    Yao, Kui
    Huang, Shuai
    Wang, Yuan
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (03)
  • [8] The heat and Poisson equations for the Jacobi-Dunkl generalized Laplacian
    Chouchene, F
    Gallardo, L
    Mili, M
    [J]. COMPTES RENDUS MATHEMATIQUE, 2005, 341 (03) : 179 - 184
  • [9] ON ESTIMATING THE ERROR BY NUMERICAL-SOLUTION OF DIRICHLET PROBLEMS FOR HELMHOLTZ (POISSON) EQUATIONS IN A STRIPE
    BONCHEV, EK
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1989, 42 (01): : 59 - 62
  • [10] On the Dunkl convolution equations in spaces of type
    Mejjaoli, Hatem
    Salem, Ahmedou Ould Ahmed
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (08) : 619 - 634