The purpose of the study was to examine the effects of arterial coculture conditions on the transport properties of several in vitro endothelial cell (EC)–smooth muscle cell (SMC)—porous filter constructs in which SMC were grown to confluence first and then EC were inoculated. This order of culturing simulates the environment of a blood vessel wall after endothelial layer damage due to stenting, vascular grafting or other vascular wall insult. For all coculture configurations examined, we observed that hydraulic conductivity (Lp) values were significantly higher than predicted by a resistances-in-series (RIS) model accounting for the Lp of EC and SMC measured separately. The greatest increases were observed when EC were plated directly on top of a confluent SMC layer without an intervening filter, presumably mediated by direct EC–SMC contacts that were observed under confocal microscopy. The results are the opposite of a previous study that showed Lp was significantly reduced compared to an RIS model when EC were grown to confluency first. The physiological, pathophysiological and tissue engineering implications of these results are discussed.