Asymptotics of Maxwell time in the plate-ball problem

被引:0
|
作者
Mashtakov A.P. [1 ]
Popov A.Y. [1 ]
机构
[1] Program Systems Institute of RAS, Pereslavl-Zalessky
基金
俄罗斯基础研究基金会;
关键词
Discrete Symmetry; Unique Root; Asymptotic Case; Extremal Trajectory; Mathematical Pendulum;
D O I
10.1007/s10958-013-1583-3
中图分类号
学科分类号
摘要
The problem on rolling of a sphere on a plane without slipping or twisting is considered. One should roll the sphere from one contact configuration to another so that the length of the curve traced by the contact point in the plane is the shortest possible. The asymptotics of Maxwell time for rolling of the sphere along small amplitude sinusoids is studied. A two-sided estimate for this asymptotics is obtained. © 2013 Springer Science+Business Media New York.
引用
收藏
页码:336 / 368
页数:32
相关论文
共 50 条
  • [1] THE GEOMETRY OF THE PLATE-BALL PROBLEM
    JURDJEVIC, V
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (04) : 305 - 328
  • [2] TRAJECTORIES OF THE PLATE-BALL PROBLEM
    Pulov, Vladimir I.
    Hadzhilazova, Mariana Ts.
    Mladenov, Ivailo M.
    PROCEEDINGS OF THE EIGHTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2017, : 203 - 216
  • [3] The Berry phase in the plate-ball problem
    Iwai, T.
    Watanabe, E.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 225 (4-6):
  • [4] The Berry phase in the plate-ball problem
    Iwai, T
    Watanabe, E
    PHYSICS LETTERS A, 1997, 225 (4-6) : 183 - 187
  • [5] Robust stabilization of the plate-ball manipulation system
    Oriolo, G
    Vendittelli, M
    2001 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2001, : 91 - 96
  • [6] From nominal to robust planning: The plate-ball manipulation system
    Oriolo, G
    Vendittelli, M
    Marigo, A
    Bicchi, A
    2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2003, : 3175 - 3180
  • [7] A framework for the stabilization of general nonholonomic systems with an application to the plate-ball mechanism
    Oriolo, G
    Vendittelli, M
    IEEE TRANSACTIONS ON ROBOTICS, 2005, 21 (02) : 162 - 175
  • [8] Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane
    Mashtakov, A. P.
    Sachkov, Yu. L.
    SBORNIK MATHEMATICS, 2011, 202 (09) : 1347 - 1371
  • [9] Approximate Steering of a Plate-Ball System Under Bounded Model Perturbation Using Ensemble Control
    Becker, Aaron
    Bretl, Timothy
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 5353 - 5359
  • [10] Maxwell Waite Ball - Corridors of time
    Kerr, A
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 1999, 38 (04): : 13 - 14