On a convex body with odd hadwiger number

被引:0
|
作者
A. Joós
机构
[1] Eötvös Loránd University,Department of Geometry
来源
Acta Mathematica Hungarica | 2008年 / 119卷
关键词
packing; Hadwiger number; kissing number; 52C17;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a convex body K ⊃ ℝ3 such that the maximum number of mutually nonoverlapping translates of K which touch K is 15.
引用
收藏
页码:307 / 321
页数:14
相关论文
共 50 条
  • [1] On a convex body with odd Hadwiger number
    Joos, A.
    ACTA MATHEMATICA HUNGARICA, 2008, 119 (04) : 307 - 321
  • [2] A Weakening of the Odd Hadwiger's Conjecture
    Kawarabayashi, Ken-Ichi
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (06): : 815 - 821
  • [3] Odd Hadwiger for line-graphs
    Steiner, Raphael
    DISCRETE MATHEMATICS, 2023, 346 (01)
  • [4] On the blocking number and the covering number of a convex body
    Yu, Long
    Zong, Chuanming
    ADVANCES IN GEOMETRY, 2009, 9 (01) : 13 - 29
  • [5] Some remarks on the odd hadwiger’s conjecture
    Ken-ichi Kawarabayashi
    Zi-Xia Song
    Combinatorica, 2007, 27
  • [6] Some remarks on the odd Hadwiger's conjecture
    Kawarabayashi, Ken-Ichi
    Song, Zi-Xia
    COMBINATORICA, 2007, 27 (04) : 429 - 438
  • [7] On the complexity of approximating the Hadwiger number
    Wahlen, Martin
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (8-10) : 994 - 1000
  • [8] The kissing number, blocking number and covering number of a convex body
    Zong, Chuanming
    SURVEYS ON DISCRETE AND COMPUTATIONAL GEOMETRY: TWENTY YEARS LATER, 2008, 453 : 529 - 548
  • [9] The Hadwiger Theorem on Convex Functions, I
    Colesanti, Andrea
    Ludwig, Monika
    Mussnig, Fabian
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2024, : 1839 - 1898
  • [10] Fractional coloring and the odd Hadwiger's conjecture
    Kawarabayashi, Ken-Ichi
    Reed, Bruce
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (02) : 411 - 417