Co-clustering addresses the problem of simultaneous clustering of both dimensions of a data matrix. When dealing with high dimensional sparse data, co-clustering turns out to be more beneficial than one-sided clustering even if one is interested in clustering along one dimension only. Aside from being high dimensional and sparse, some datasets, such as document-term matrices, exhibit directional characteristics, and the L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_2$$\end{document} normalization of such data, so that it lies on the surface of a unit hypersphere, is useful. Popular co-clustering assumptions such as Gaussian or Multinomial are inadequate for this type of data. In this paper, we extend the scope of co-clustering to directional data. We present Diagonal Block Mixture of Von Mises–Fisher distributions (dbmovMFs), a co-clustering model which is well suited for directional data lying on a unit hypersphere. By setting the estimate of the model parameters under the maximum likelihood (ML) and classification ML approaches, we develop a class of EM algorithms for estimating dbmovMFs from data. Extensive experiments, on several real-world datasets, confirm the advantage of our approach and demonstrate the effectiveness of our algorithms.