On a transport problem and monoids of non-negative integers

被引:0
|
作者
Aureliano M. Robles-Pérez
José Carlos Rosales
机构
[1] Universidad de Granada,Departamento de Matemática Aplicada
[2] Universidad de Granada,Departamento de Álgebra
来源
Aequationes mathematicae | 2018年 / 92卷
关键词
Transport problem; Diophantine inequalities; Monoids; 20M14; 11D75;
D O I
暂无
中图分类号
学科分类号
摘要
A problem about how to transport profitably a group of cars leads us to studying the set T formed by the integers n such that the system of inequalities, with non-negative integer coefficients, a1x1+⋯+apxp+α≤n≤b1x1+⋯+bpxp-β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} a_1x_1 +\cdots + a_px_p + \alpha \le n \le b_1x_1 +\cdots + b_px_p - \beta \end{aligned}$$\end{document}has at least one solution in Np\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb N}^p$$\end{document}. We prove that T∪{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\cup \{0\}$$\end{document} is a submonoid of (N,+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb N},+)$$\end{document} and, moreover, we give algorithmic processes to compute T.
引用
收藏
页码:661 / 670
页数:9
相关论文
共 50 条