We propose an asymptotic preserving nodal discretization of the hyperbolic heat equation, also known as the P1 equation, on unstructured meshes in 2-D. This method, in diffusive regime, overcomes the problem of the inconsistent limit with diffusion, of classical multidimensional extensions of 1-D asymptotic preserving schemes, based on edge formulation. We provide both theoretical and numerical results.
机构:
Sorbonne Univ, Univ Paris Cite, CNRS, Lab Jacques Louis LJLL, F-75006 Paris, FranceSorbonne Univ, Univ Paris Cite, CNRS, Lab Jacques Louis LJLL, F-75006 Paris, France
Blanc, Xavier
Hoch, Philippe
论文数: 0引用数: 0
h-index: 0
机构:
CEA, DAM, DIF, F-91297 Arpajon, FranceSorbonne Univ, Univ Paris Cite, CNRS, Lab Jacques Louis LJLL, F-75006 Paris, France
Hoch, Philippe
Lasuen, Clement
论文数: 0引用数: 0
h-index: 0
机构:
CEA, DAM, DIF, F-91297 Arpajon, FranceSorbonne Univ, Univ Paris Cite, CNRS, Lab Jacques Louis LJLL, F-75006 Paris, France
机构:
Univ Technol Troyes, GAMMA3, 12 Rue Marie Curie, F-10004 Troyes, FranceUniv Technol Troyes, GAMMA3, 12 Rue Marie Curie, F-10004 Troyes, France
Blachere, Florian
Chalons, Christophe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Lab Math Versailles, CNRS, UVSQ, 45 Ave Etats Unis, F-78035 Versailles, FranceUniv Technol Troyes, GAMMA3, 12 Rue Marie Curie, F-10004 Troyes, France
Chalons, Christophe
Turpault, Rodolphe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux, Inst Math Bordeaux, Bordeaux INP, UMR 5251, 351 Tours Liberat Bat A33, F-33405 Talence, FranceUniv Technol Troyes, GAMMA3, 12 Rue Marie Curie, F-10004 Troyes, France