Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes

被引:0
|
作者
Christophe Buet
Bruno Després
Emmanuel Franck
机构
[1] CEA,Laboratoire Jacques
[2] DAM,Louis Lions
[3] DIF,undefined
[4] Université Pierre et Marie Curie,undefined
来源
Numerische Mathematik | 2012年 / 122卷
关键词
35L65; 65M08; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an asymptotic preserving nodal discretization of the hyperbolic heat equation, also known as the P1 equation, on unstructured meshes in 2-D. This method, in diffusive regime, overcomes the problem of the inconsistent limit with diffusion, of classical multidimensional extensions of 1-D asymptotic preserving schemes, based on edge formulation. We provide both theoretical and numerical results.
引用
收藏
页码:227 / 278
页数:51
相关论文
共 50 条