A Superconvergent Discontinuous Galerkin Method for Hyperbolic Problems on Tetrahedral Meshes

被引:0
|
作者
Slimane Adjerid
Idir Mechai
机构
[1] Virginia Polytechnic Institute and State University,Department of Mathematics
来源
关键词
Discontinuous Galerkin method; Hyperbolic problems ; Superconvergence; error estimation; Tetrahedral meshes;
D O I
暂无
中图分类号
学科分类号
摘要
In this manuscript we present a superconvergent discontinuous Galerkin method equipped with an element residual error estimator applied to scalar first-order hyperbolic problems using tetrahedral meshes. We present a local error analysis to derive a discontinuous Galerkin orthogonality condition for the leading term of the discretization error and establish new superconvergence points, lines and surfaces. We also derive new basis functions spanning the error and propose an implicit error estimation procedure by solving a local problem on each tetrahedron. The DG method combined with the a posteriori error estimation procedure yields both accurate error estimates and O(hp+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^{p+2})$$\end{document} superconvergent solutions. Computations validate our theory.
引用
收藏
页码:203 / 248
页数:45
相关论文
共 50 条