Uncertainty quantification based cloud parameterization sensitivity analysis in the NCAR community atmosphere model

被引:0
|
作者
Raju Pathak
Sandeep Sahany
Saroj K. Mishra
机构
[1] Indian Institute of Technology Delhi,Centre for Atmospheric Sciences
[2] Centre for Climate Research,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Using uncertainty quantification techniques, we carry out a sensitivity analysis of a large number (17) of parameters used in the NCAR CAM5 cloud parameterization schemes. The LLNL PSUADE software is used to identify the most sensitive parameters by performing sensitivity analysis. Using Morris One-At-a-Time (MOAT) method, we find that the simulations of global annual mean total precipitation, convective, large-scale precipitation, cloud fractions (total, low, mid, and high), shortwave cloud forcing, longwave cloud forcing, sensible heat flux, and latent heat flux are very sensitive to the threshold-relative-humidity-for-stratiform-low-clouds (rhminl)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rhminl)$$\end{document} and the auto-conversion-size-threshold-for-ice-to-snow dcs.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {dcs} \right).$$\end{document} The seasonal and regime specific dependence of some parameters in the simulation of precipitation is also found for the global monsoons and storm track regions. Through sensitivity analysis, we find that the Somali jet strength and the tropical easterly jet associated with the south Asian summer monsoon (SASM) show a systematic dependence on dcs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dcs$$\end{document} and rhminl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rhminl$$\end{document}. The timing of the withdrawal of SASM over India shows a monotonic increase (delayed withdrawal) with an increase in dcs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dcs$$\end{document}. Overall, we find that rhminl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rhminl$$\end{document}, dcs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dcs$$\end{document}, ai,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ai,$$\end{document} and as\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$as$$\end{document} are the most sensitive cloud parameters and thus are of high priority in the model tuning process, in order to reduce uncertainty in the simulation of past, present, and future climate.
引用
收藏
相关论文
共 50 条
  • [1] Uncertainty quantification based cloud parameterization sensitivity analysis in the NCAR community atmosphere model
    Pathak, Raju
    Sahany, Sandeep
    Mishra, Saroj K.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [2] Uncertainty Quantification and Bayesian Inference of Cloud Parameterization in the NCAR Single Column Community Atmosphere Model (SCAM6)
    Pathak, Raju
    Dasari, Hari Prasad
    El Mohtar, Samah
    Subramanian, Aneesh C.
    Sahany, Sandeep
    Mishra, Saroj Kanta
    Knio, Omar
    Hoteit, Ibrahim
    [J]. FRONTIERS IN CLIMATE, 2021, 3
  • [3] A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results
    Khairoutdinov, MF
    Randall, DA
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (18) : 3617 - 3620
  • [4] Assessing the Uncertainty in Tropical Cyclone Simulations in NCAR's Community Atmosphere Model
    Reed, Kevin A.
    Jablonowski, Christiane
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2011, 3
  • [5] Evaluation of Microphysics Parameterization for Convective Clouds in the NCAR Community Atmosphere Model CAM5
    Song, Xiaoliang
    Zhang, Guang J.
    Li, J. -L. F.
    [J]. JOURNAL OF CLIMATE, 2012, 25 (24) : 8568 - 8590
  • [6] INVESTIGATION OF THE SENSITIVITY OF THE LAND SURFACE PARAMETERIZATION OF THE NCAR COMMUNITY CLIMATE MODEL IN REGIONS OF TUNDRA VEGETATION
    WILSON, MF
    HENDERSON-SELLERS, A
    DICKINSON, RE
    KENNEDY, PJ
    [J]. JOURNAL OF CLIMATOLOGY, 1987, 7 (04): : 319 - 343
  • [7] A new general circulation model for Mars based on the NCAR Community Atmosphere Model
    Urata, Richard A.
    Toon, Owen B.
    [J]. ICARUS, 2013, 226 (01) : 336 - 354
  • [8] Model and analysis of single event transient sensitivity based on uncertainty quantification
    Liu, Baojun
    Cai, Li
    [J]. MICROPROCESSORS AND MICROSYSTEMS, 2022, 90
  • [9] Quantification of Cloud Microphysical Parameterization Uncertainty Using Radar Reflectivity
    van Lier-Walqui, Marcus
    Vukicevic, Tomislava
    Posselt, Derek J.
    [J]. MONTHLY WEATHER REVIEW, 2012, 140 (11) : 3442 - 3466
  • [10] Application of cloud microphysics to NCAR community climate model
    Ghan, SJ
    Leung, LR
    Hu, Q
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D14) : 16507 - 16527