Accurate RGB-D SLAM in dynamic environments based on dynamic visual feature removal

被引:0
|
作者
Chenxin Liu
Jiahu Qin
Shuai Wang
Lei Yu
Yaonan Wang
机构
[1] University of Science and Technology of China,Department of Automation
[2] Hefei Comprehensive National Science Center,Institute of Artificial Intelligence
[3] Hunan University,College of Electrical and Information Engineering
[4] Hunan University,National Engineering Research Center of Robot Visual Perception and Control Technology
来源
关键词
SLAM; dynamic environments; indoor localization; graph-cut; robot navigation;
D O I
暂无
中图分类号
学科分类号
摘要
Visual localization is considered an essential capability in robotics and has attracted increasing interest for the past few years. However, most proposed visual localization systems assume that the surrounding environment is static, which is difficult to maintain in real-world scenarios due to the presence of moving objects. In this paper, we present DFR-SLAM, a real-time and accurate RGB-D SLAM based on ORB-SLAM2 that achieves satisfactory performance in a variety of challenging dynamic scenarios. At the core of our system lies a motion consensus filtering algorithm estimating the initial camera pose and a graph-cut optimization framework combining long-term observations, prior information, and spatial coherence to jointly distinguish dynamic and static visual features. Other systems for dynamic environments detect dynamic components by using the information from short time-span frames, whereas our system uses observations from a long period of keyframes. We evaluate our system using dynamic sequences from the public TUM dataset, and the evaluation demonstrates that the proposed system outperforms the original ORB-SLAM2 system significantly. In addition, our system provides competitive localization accuracy with satisfactory real-time performance compared to closely related SLAM systems designed to adapt to dynamic environments.
引用
收藏
相关论文
共 50 条
  • [1] Accurate RGB-D SLAM in dynamic environments based on dynamic visual feature removal
    Liu, Chenxin
    Qin, Jiahu
    Wang, Shuai
    Yu, Lei
    Wang, Yaonan
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (10)
  • [2] Accurate RGB-D SLAM in dynamic environments based on dynamic visual feature removal
    Chenxin LIU
    Jiahu QIN
    Shuai WANG
    Lei YU
    Yaonan WANG
    Science China(Information Sciences), 2022, 65 (10) : 256 - 269
  • [3] Motion removal for reliable RGB-D SLAM in dynamic environments
    Sun, Yuxiang
    Liu, Ming
    Meng, Max Q. -H.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 108 : 115 - 128
  • [4] Improving RGB-D SLAM in dynamic environments: A motion removal approach
    Sun, Yuxiang
    Liu, Ming
    Meng, Max Q. -H.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2017, 89 : 110 - 122
  • [5] Ground Enhanced RGB-D SLAM for Dynamic Environments
    Guo, Ruibin
    Liu, Xinghua
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE-ROBIO 2021), 2021, : 1171 - 1177
  • [6] Robust and Efficient RGB-D SLAM in Dynamic Environments
    Yang, Xin
    Yuan, Zikang
    Zhu, Dongfu
    Chi, Cheng
    Li, Kun
    Liao, Chunyuan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 4208 - 4219
  • [7] Semantic Segmentation based Dense RGB-D SLAM in Dynamic Environments
    Zhang, Jianbo
    Liu, Yanjie
    Chen, Junguo
    Ma, Liulong
    Jin, Dong
    Chen, Jiao
    2019 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, AUTOMATION AND CONTROL TECHNOLOGIES (AIACT 2019), 2019, 1267
  • [8] Strong-SLAM: real-time RGB-D visual SLAM in dynamic environments based on StrongSORT
    Huang, Wei
    Zou, Chunlong
    Yun, Juntong
    Jiang, Du
    Huang, Li
    Liu, Ying
    Jiang, Guo Zhang
    Xie, Yuanmin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [9] RGB-D SLAM in Dynamic Environments with Multilevel Semantic Mapping
    Qin, Yusheng
    Mei, Tiancan
    Gao, Zhi
    Lin, Zhipeng
    Song, Weiwei
    Zhao, Xuhui
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2022, 105 (04)
  • [10] RGB-D SLAM in Dynamic Environments with Multilevel Semantic Mapping
    Yusheng Qin
    Tiancan Mei
    Zhi Gao
    Zhipeng Lin
    Weiwei Song
    Xuhui Zhao
    Journal of Intelligent & Robotic Systems, 2022, 105