We establish order estimates for the best uniform orthogonal trigonometric approximations on the classes of 2π-periodic functions whose (ψ,β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \beta $$\end{document})-derivatives belong to unit balls in the spaces Lp, 1 ≤ p < ∞, in the case where the sequence ψ(k) is such that the product ψ(n)n1/p may tend to zero slower than any power function and ∑k=1∞ψp′kp′−2<∞for1<p<∞,1p+1p′=1,or∑k=1∞ψk<∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\displaystyle {\sum}_{k=1}^{\infty }}{\psi}^{p\prime }{(k)}^{p\prime -2}<\infty \kern0.5em \mathrm{f}\mathrm{o}\mathrm{r}\kern0.5em 1<p<\infty, \frac{1}{p}+\frac{1}{p^{\prime }}=1,\kern0.5em \mathrm{o}\mathrm{r}{\displaystyle {\sum}_{k=1}^{\infty }}\psi (k)<\infty $$\end{document} for p = 1. Similar estimates are also established in the Ls-metrics, 1 < s ≤ ∞, for the classes of summable (ψ,β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \beta $$\end{document})-differentiable functions such that ‖fβψ‖1 ≤ 1.