Order Estimates for the Best Orthogonal Trigonometric Approximations of the Classes of Convolutions of Periodic Functions of Low Smoothness

被引:0
|
作者
A. S. Serdyuk
T. A. Stepanyuk
机构
[1] Ukrainian National Academy of Sciences,Institute of Mathematics
[2] L. Ukrainka East-European National University,undefined
来源
关键词
Fourier Series; Periodic Function; Differentiable Function; Order Estimate; Approximation Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We establish order estimates for the best uniform orthogonal trigonometric approximations on the classes of 2π-periodic functions whose (ψ,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \beta $$\end{document})-derivatives belong to unit balls in the spaces Lp, 1 ≤ p < ∞, in the case where the sequence ψ(k) is such that the product ψ(n)n1/p may tend to zero slower than any power function and ∑k=1∞ψp′kp′−2<∞for1<p<∞,1p+1p′=1,or∑k=1∞ψk<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\displaystyle {\sum}_{k=1}^{\infty }}{\psi}^{p\prime }{(k)}^{p\prime -2}<\infty \kern0.5em \mathrm{f}\mathrm{o}\mathrm{r}\kern0.5em 1<p<\infty, \frac{1}{p}+\frac{1}{p^{\prime }}=1,\kern0.5em \mathrm{o}\mathrm{r}{\displaystyle {\sum}_{k=1}^{\infty }}\psi (k)<\infty $$\end{document} for p = 1. Similar estimates are also established in the Ls-metrics, 1 < s ≤ ∞, for the classes of summable (ψ,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \beta $$\end{document})-differentiable functions such that ‖fβψ‖1 ≤ 1.
引用
收藏
页码:1038 / 1061
页数:23
相关论文
共 50 条