Data-driven acceleration of photonic simulations

被引:0
|
作者
Rahul Trivedi
Logan Su
Jesse Lu
Martin F. Schubert
Jelena Vuckovic
机构
[1] Stanford University,E. L. Ginzton Laboratory
[2] X,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and typically results in the designer performing electromagnetic simulations of a large number of correlated devices. In this paper, we investigate the possibility of accelerating electromagnetic simulations using the data collected from such correlated simulations. In particular, we present an approach to accelerate the Generalized Minimal Residual (GMRES) algorithm for the solution of frequency-domain Maxwell’s equations using two machine learning models (principal component analysis and a convolutional neural network). These data-driven models are trained to predict a subspace within which the solution of the frequency-domain Maxwell’s equations approximately lies. This subspace is then used for augmenting the Krylov subspace generated during the GMRES iterations, thus effectively reducing the size of the Krylov subspace and hence the number of iterations needed for solving Maxwell’s equations. By training the proposed models on a dataset of wavelength-splitting gratings, we show an order of magnitude reduction (~10–50) in the number of GMRES iterations required for solving frequency-domain Maxwell’s equations.
引用
收藏
相关论文
共 50 条
  • [1] Data-driven acceleration of photonic simulations
    Trivedi, Rahul
    Su, Logan
    Lu, Jesse
    Schubert, Martin F.
    Vuckovic, Jelena
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [2] Publisher Correction: Data-driven acceleration of photonic simulations
    Rahul Trivedi
    Logan Su
    Jesse Lu
    Martin F. Schubert
    Jelena Vuckovic
    [J]. Scientific Reports, 10 (1)
  • [3] Data-driven acceleration of photonic simulations (vol 9, 19728, 2019)
    Trivedi, Rahul
    Su, Logan
    Lu, Jesse
    Schubert, Martin F.
    Vuckovic, Jelena
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01):
  • [4] A data-driven approach for reduction of molecular simulations
    Oguz, C
    Gallivan, MA
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2005, 15 (15) : 727 - 743
  • [5] Data-driven aerodynamic models for aeroelastic simulations
    Lelkes, Janos
    Horvath, David Andras
    Lendvai, Balint
    Farkas, Balazs
    Bak, Bendeguz Dezso
    Kalmar-Nagy, Tamas
    [J]. JOURNAL OF SOUND AND VIBRATION, 2023, 564
  • [6] A Data-Driven Surrogate Modelling Approach for Acceleration of Short-Term Simulations of a Dynamic Urban Drainage Simulator
    Mahmoodian, Mahmood
    Torres-Matallana, Jairo Arturo
    Leopold, Ulrich
    Schutz, Georges
    Clemens, Francois H. L. R.
    [J]. WATER, 2018, 10 (12):
  • [7] Data-driven correction of coarse grid CFD simulations
    Kiener, A.
    Langer, S.
    Bekemeyer, P.
    [J]. COMPUTERS & FLUIDS, 2023, 264
  • [8] Data-driven RANS for simulations of large wind farms
    Iungo, G. V.
    Viola, F.
    Ciri, U.
    Rotea, M. A.
    Leonardi, S.
    [J]. WAKE CONFERENCE 2015, 2015, 625
  • [9] Data-driven Fluid Simulations using Regression Forests
    Ladicky, L'ubor
    Jeong, SoHyeon
    Solenthaler, Barbara
    Pollefeys, Marc
    Gross, Markus
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (06):
  • [10] Data-driven analysis of oscillations in Hall thruster simulations
    Maddaloni, Davide
    Dominguez-Vazquez, Adrian
    Terragni, Filippo
    Merino, Mario
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2022, 31 (04):