Functional equation helps in finding affine-covariant probability distributions

被引:0
|
作者
Misha Koshelev
机构
[1] Baylor College of Medicine,Human Neuroimaging Lab
来源
Aequationes mathematicae | 2011年 / 81卷
关键词
39B42; 62H30; Matrix functional equation; applications to Bayesianstatistics; affine covariance;
D O I
暂无
中图分类号
学科分类号
摘要
To select variables which provide the most relevant clustering, researchers use a probability density f that depends on the means E and the covariance matrix C of the data. Under the assumption that the distributions are normal, this density becomes proportional to f(C) = |det(C)|α for some real value α, where det(C) is the determinant of the matrix C. This function is affine-covariant in the sense that the ratios of the two density values do not change under an arbitrary affine transformation. In this paper, we show that only the functions f(C) = |det(C)|α satisfy the functional equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{f(E,C)}{f(E',C')}= \frac{f(U^TE+S,U^TCU)}{f(U^TE'+S,U^TC'U)}$$\end{document}that describes affine covariance. This result justifies the use of the functions f(C) = |det(C)|α in non-Gaussian situations as well.
引用
收藏
页码:279 / 286
页数:7
相关论文
共 50 条
  • [1] Functional equation helps in finding affine-covariant probability distributions
    Koshelev, Misha
    [J]. AEQUATIONES MATHEMATICAE, 2011, 81 (03) : 279 - 286
  • [2] On a Functional Equation Characterizing Some Probability Distributions
    Jarczyk, Justyna
    Jarczyk, Witold
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2024, : 112 - 121
  • [3] Covariant Functional Calculi from the Affine Groups
    Gong, Yafang
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (03) : 447 - 461
  • [4] The Pauli equation for probability distributions
    Mancini, S
    Man'ko, OV
    Man'ko, VI
    Tombesi, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (16): : 3461 - 3476
  • [5] On the stability of an affine functional equation
    Cadariu, Liviu
    Gavruta, Laura
    Gavruta, Pasc
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2013, 6 (02): : 60 - 67
  • [6] ON A GENERALIZATION OF A FUNCTIONAL-EQUATION ASSOCIATED WITH THE DISTANCE BETWEEN THE PROBABILITY-DISTRIBUTIONS
    RIEDEL, T
    SAHOO, PK
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1995, 46 (1-2): : 125 - 135
  • [7] Approximate probability distributions of the master equation
    Thomas, Philipp
    Grima, Ramon
    [J]. PHYSICAL REVIEW E, 2015, 92 (01):
  • [8] Reparametrization-covariant theory for on-line learning of probability distributions
    Aida, T
    [J]. PHYSICAL REVIEW E, 2001, 64 (05): : 6 - 056128
  • [9] ON A FUNCTIONAL EQUATION ARISING IN PROBABILITY
    HORN, RA
    MEREDITH, RD
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (07): : 802 - &
  • [10] COVARIANT FUNCTIONAL DIFFUSION EQUATION FOR POLYAKOV BOSONIC STRING
    BOTELHO, LCL
    [J]. PHYSICAL REVIEW D, 1989, 40 (02): : 660 - 662