Dimension Drop for Harmonic Measure on Ahlfors Regular Boundaries

被引:0
|
作者
Jonas Azzam
机构
[1] University of Edinburgh,School of Mathematics
[2] JCMB,undefined
来源
Potential Analysis | 2020年 / 53卷
关键词
Harmonic measure; Dimension; Ahlfors regular sets; 31A15; 28A75; 28A78; 31B05; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
We show that given a domain Ω⊆ℝd+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Omega }\subseteq \mathbb {R}^{d+1}$\end{document} with uniformly non-flat Ahlfors s-regular boundary with s ≥ d, the dimension of its harmonic measure is strictly less than s.
引用
收藏
页码:1025 / 1041
页数:16
相关论文
共 50 条
  • [1] Dimension Drop for Harmonic Measure on Ahlfors Regular Boundaries
    Azzam, Jonas
    [J]. POTENTIAL ANALYSIS, 2020, 53 (03) : 1025 - 1041
  • [2] Characterization of Ahlfors Regular Conformal Dimension
    Kigami, Jun
    [J]. GEOMETRY AND ANALYSIS OF METRIC SPACES VIA WEIGHTED PARTITIONS, 2020, 2265 : 97 - 152
  • [3] Thurston obstructions and Ahlfors regular conformal dimension
    Haissinsky, Peter
    Pilgrim, Kevin M.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (03): : 229 - 241
  • [4] Ahlfors regular spaces have regular subspaces of any dimension
    Arcozzi, Nicola
    Monguzzi, Alessandro
    Salvatori, Maura
    [J]. RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2023, 14 (01): : 19 - 32
  • [5] Absolute continuity of harmonic measure for domains with lower regular boundaries
    Akman, Murat
    Azzam, Jonas
    Mourgoglou, Mihalis
    [J]. ADVANCES IN MATHEMATICS, 2019, 345 : 1206 - 1252
  • [6] The Dimension of Harmonic Measure on Some AD-Regular Flat Sets of Fractional Dimension
    Tolsa, Xavier
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (08) : 6579 - 6605
  • [7] Quasisymmetric dimension distortion of Ahlfors regular subsets of a metric space
    Bishop, Christopher J.
    Hakobyan, Hrant
    Williams, Marshall
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (02) : 379 - 421
  • [8] Quasisymmetric dimension distortion of Ahlfors regular subsets of a metric space
    Christopher J. Bishop
    Hrant Hakobyan
    Marshall Williams
    [J]. Geometric and Functional Analysis, 2016, 26 : 379 - 421
  • [9] Diameter Bounded Equal Measure Partitions of Ahlfors Regular Metric Measure Spaces
    Giacomo Gigante
    Paul Leopardi
    [J]. Discrete & Computational Geometry, 2017, 57 : 419 - 430
  • [10] Diameter Bounded Equal Measure Partitions of Ahlfors Regular Metric Measure Spaces
    Gigante, Giacomo
    Leopardi, Paul
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 57 (02) : 419 - 430