Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres

被引:0
|
作者
Kamal Ould Bouh
机构
[1] Institut Supérieur de Comptabilité et d’Administration d’Entreprises,
[2] ISCAE,undefined
来源
关键词
Critical points; Critical exponent; Variational problem; Paneitz curvature; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents (S±ε):Δ2u−cnΔu+dnu=Kun+4n−4±ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(S_{\pm \varepsilon}): \Delta ^{2}u-c_{n}\Delta u+d_{n}u = Ku^{ \frac{n+4}{n-4}\pm \varepsilon}$\end{document}, u>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u>0$\end{document} on Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S^{n}$\end{document}, where n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq 5$\end{document}, ε is a small positive parameter and K is a smooth positive function on Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S^{n}$\end{document}. We construct some solutions of (S−ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(S_{-\varepsilon})$\end{document} that blow up at one critical point of K. However, we prove also a nonexistence result of single-peaked solutions for the supercritical equation (S+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(S_{+\varepsilon})$\end{document}.
引用
收藏
相关论文
共 50 条