Organic p-i-n solar cells

被引:0
|
作者
B. Maennig
J. Drechsel
D. Gebeyehu
P. Simon
F. Kozlowski
A. Werner
F. Li
S. Grundmann
S. Sonntag
M. Koch
K. Leo
M. Pfeiffer
H. Hoppe
D. Meissner
N.S. Sariciftci
I. Riedel
V. Dyakonov
J. Parisi
机构
[1] Technische Universität Dresden,Institut für Angewandte Photophysik
[2] Max Planck Institute for Chemical Physics of Solids,Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry
[3] Dresden,Energy and Semiconductor Research Laboratory, Institute of Physics
[4] Johannes Kepler University,undefined
[5] University of Oldenburg,undefined
来源
Applied Physics A | 2004年 / 79卷
关键词
Solar Cell; Fullerene; Phthalocyanine; External Quantum Efficiency; Internal Quantum Efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a p-i-n-type heterojunction architecture for organic solar cells where the active region is sandwiched between two doped wide-gap layers. The term p-i-n means here a layer sequence in the form p-doped layer, intrinsic layer and n-doped layer. The doping is realized by controlled co-evaporation using organic dopants and leads to conductivities of 10-4 to 10-5 S/cm in the p- and n-doped wide-gap layers, respectively. The photoactive layer is formed by a mixture of phthalocyanine zinc (ZnPc) and the fullerene C60 and shows mainly amorphous morphology. As a first step towards p-i-n structures, we show the advantage of using wide-gap layers in M-i-p-type diodes (metal layer–intrinsic layer–p-doped layer). The solar cells exhibit a maximum external quantum efficiency of 40% between 630-nm and 700-nm wavelength. With the help of an optical multilayer model, we optimize the optical properties of the solar cells by placing the active region at the maximum of the optical field distribution. The results of the model are largely confirmed by the experimental findings. For an optically optimized device, we find an internal quantum efficiency of around 82% under short-circuit conditions. Adding a layer of 10-nm thickness of the red material N,N′-dimethylperylene-3,4:9,10-dicarboximide (Me-PTCDI) to the active region, a power-conversion efficiency of 1.9% for a single cell is obtained. Such optically thin cells with high internal quantum efficiency are an important step towards high-efficiency tandem cells. First tandem cells which are not yet optimized already show 2.4% power-conversion efficiency under simulated AM 1.5 illumination of 125 mW/cm2 .
引用
收藏
页码:1 / 14
页数:13
相关论文
共 50 条
  • [1] Organic p-i-n solar cells
    Maennig, B
    Drechsel, J
    Gebeyehu, D
    Simon, P
    Kozlowski, F
    Werner, A
    Li, F
    Grundmann, S
    Sonntag, S
    Koch, M
    Leo, K
    Pfeiffer, M
    Hoppe, H
    Meissner, D
    Sariciftci, NS
    Riedel, I
    Dyakonov, V
    Parisi, J
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 79 (01): : 1 - 14
  • [2] P-I-N junction organic solar cells
    Hiramoto, Masahiro
    Suemori, Kouji
    Matsumura, Yoshio
    Miyata, Takahiro
    Yokoyama, Masaaki
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2006, 455 : 267 - 275
  • [3] Organic solar cells incorporating a p-i-n junction
    Hiramoto, M
    Suemori, K
    Yokoyama, M
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2006, 444 : 33 - 40
  • [4] P-I-N + N-I-P BASIS SOLAR-CELLS
    UCHIDA, Y
    JAPAN ANNUAL REVIEWS IN ELECTRONICS COMPUTERS & TELECOMMUNICATIONS, 1984, 16 : 180 - 199
  • [5] Inverted Hysteresis in n-i-p and p-i-n Perovskite Solar Cells
    Garcia-Rodriguez, Rodrigo
    Riquelme, Antonio J.
    Cowley, Matthew
    Valadez-Villalobos, Karen
    Oskam, Gerko
    Bennett, Laurence J.
    Wolf, Matthew J.
    Contreras-Bernal, Lidia
    Cameron, Petra J.
    Walker, Alison B.
    Anta, Juan A.
    ENERGY TECHNOLOGY, 2022, 10 (12)
  • [6] p-i-n Perovskite Solar Cells on Steel Substrates
    Feleki, Benjamin T.
    Bouwer, Ricardo K. M.
    Zardetto, Valerio
    Wienk, Martijn M.
    Janssen, Rene A. J.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06) : 6709 - 6715
  • [7] Optical characterization of GaInP p-i-n solar cells
    Li, Yun-Guang
    Lin, Der-Yuh
    Ko, Tsung-Shine
    Wu, Jenq-Shinn
    Wu, Chih-Hung
    Tsai, Yu-Li
    Kao, Ming-Cheng
    Chen, Hong-Zen
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (04)
  • [8] InN p-i-n Nanowire Solar Cells on Si
    Hieu Pham Trung Nguyen
    Chang, Yi-Lu
    Shih, Ishiang
    Mi, Zetian
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (04) : 1062 - 1069
  • [9] Fully solution processed p-i-n organic solar cells with an industrial pigment - Quinacridone
    Chen, Teresa L.
    Chen, John Jun-An
    Catane, Luis
    Ma, Biwu
    ORGANIC ELECTRONICS, 2011, 12 (07) : 1126 - 1131
  • [10] Characterisation of different hole transport materials as used in organic p-i-n solar cells
    Pfuetzner, Steffen
    Petrich, Annette
    Malbrich, Christine
    Meiss, Jan
    Koch, Maik
    Riede, Moritz K.
    Pfeiffer, Martin
    Leo, Karl
    ORGANIC OPTOELECTRONICS AND PHOTONICS III, 2008, 6999