Nonparametric density and survival function estimation in the multiplicative censoring model

被引:0
|
作者
Elodie Brunel
Fabienne Comte
Valentine Genon-Catalot
机构
[1] Université Montpellier,
[2] I3M UMR CNRS 5149,undefined
[3] Université Paris Descartes,undefined
[4] MAP5,undefined
[5] UMR CNRS 8145,undefined
来源
TEST | 2016年 / 25卷
关键词
Adaptive procedure; Bandwidth selection; Kernel estimators; Multiplicative censoring model; 62G07; 62N01;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the multiplicative censoring model given by Yi=XiUi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_i=X_iU_i$$\end{document}, i=1,…,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1, \ldots ,n$$\end{document} where (Xi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_i)$$\end{document} are i.i.d. with unknown density f on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}, (Ui)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(U_i)$$\end{document} are i.i.d. with uniform distribution U([0,1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}}([0,1])$$\end{document} and (Ui)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(U_i)$$\end{document} and (Xi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_i)$$\end{document} are independent sequences. Only the sample (Yi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Y_i)$$\end{document} is observed. We study nonparametric estimators of both the density f and the corresponding survival function F¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{F}$$\end{document}. First, kernel estimators are built. Pointwise risk bounds for the quadratic risk are given, and upper and lower bounds for the rates in this setting are provided. Then, in a global setting, a data-driven bandwidth selection procedure is proposed. The resulting estimator has been proved to be adaptive in the sense that its risk automatically realizes the bias-variance compromise. Second, when the Xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_i$$\end{document}s are nonnegative, using kernels fitted for R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^+$$\end{document}-supported functions, we propose new estimators of the survival function which are also adaptive. By simulation experiments, we check the good performances of the estimators and compare the two strategies.
引用
收藏
页码:570 / 590
页数:20
相关论文
共 50 条
  • [1] Nonparametric density and survival function estimation in the multiplicative censoring model
    Brunel, Elodie
    Comte, Fabienne
    Genon-Catalot, Valentine
    [J]. TEST, 2016, 25 (03) : 570 - 590
  • [2] Nonparametric Laguerre estimation in the multiplicative censoring model
    Belomestny, Denis
    Comte, Fabienne
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 3114 - 3152
  • [3] On estimation of a density function in multiplicative censoring
    R. Zamini
    V. Fakoor
    M. Sarmad
    [J]. Statistical Papers, 2015, 56 : 661 - 676
  • [4] On estimation of a density function in multiplicative censoring
    Zamini, R.
    Fakoor, V.
    Sarmad, M.
    [J]. STATISTICAL PAPERS, 2015, 56 (03) : 661 - 676
  • [5] Nonparametric estimation in a multiplicative censoring model with symmetric noise
    Comte, F.
    Dion, C.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (04) : 768 - 801
  • [7] Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods
    Abbaszadeh, Mohammad
    Chesneau, Christophe
    Doosti, Hassan
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (05) : 932 - 941
  • [8] NONPARAMETRIC-ESTIMATION OF A BIVARIATE SURVIVAL FUNCTION IN THE PRESENCE OF CENSORING
    TSAI, WY
    LEURGANS, S
    CROWLEY, J
    [J]. ANNALS OF STATISTICS, 1986, 14 (04): : 1351 - 1365
  • [9] Nonparametric Laguerre estimation in the multiplicative censoring model (vol 10, pg 3114, 2016)
    Belomestny, Denis
    Comte, Fabienne
    Genon-Catalot, Valentine
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4845 - 4850
  • [10] Nonparametric density estimation in presence of bias and censoring
    E. Brunel
    F. Comte
    A. Guilloux
    [J]. TEST, 2009, 18 : 166 - 194