s-Elusive codes in Hamming graphs

被引:0
|
作者
Daniel R. Hawtin
机构
[1] University of Rijeka,Department of Mathematics
来源
关键词
Elusive codes; Completely transitive codes; Automorphism groups; Hamming graph; 05E18; 94B60; 05B05;
D O I
暂无
中图分类号
学科分类号
摘要
A code is a subset of the vertex set of a Hamming graph. The set of s-neighbours of a code is the set of all vertices at Hamming distance s from their nearest codeword. A code C is s-elusive if there exists a distinct code C′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C'$$\end{document} that is equivalent to C under the full automorphism group of the Hamming graph such that C and C′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C'$$\end{document} have the same set of s-neighbours. We show that the minimum distance of an s-elusive code is at most 2s+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2s+2$$\end{document}, and that an s-elusive code with minimum distance at least 2s+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2s+1$$\end{document} gives rise to a q-ary t-design with certain parameters. This leads to the construction of: an infinite family of 1-elusive and completely transitive codes, an infinite family of 2-elusive codes, and a single example of a 3-elusive code. Answers to several open questions on elusive codes are also provided.
引用
收藏
页码:1211 / 1220
页数:9
相关论文
共 50 条
  • [1] s-Elusive codes in Hamming graphs
    Hawtin, Daniel R.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (06) : 1211 - 1220
  • [2] ELUSIVE CODES IN HAMMING GRAPHS
    Hawtin, Daniel R.
    Gillespie, Neil I.
    Praeger, Cheryl E.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (02) : 286 - 296
  • [3] Hamming Graphs and Permutation Codes
    Barta, Janos
    Montemanni, Roberto
    [J]. 2017 FOURTH INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND IN INDUSTRY (MCSI), 2017, : 154 - 158
  • [4] Neighbour transitivity on codes in Hamming graphs
    Neil I. Gillespie
    Cheryl E. Praeger
    [J]. Designs, Codes and Cryptography, 2013, 67 : 385 - 393
  • [5] Completely transitive codes in hamming graphs
    Giudici, M
    Praeger, CE
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1999, 20 (07) : 647 - 661
  • [6] Hamming graphs and special LCD codes
    Fish, W.
    Key, J. D.
    Mwambene, E.
    Rodrigues, B. G.
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 61 (1-2) : 461 - 479
  • [7] Neighbour transitivity on codes in Hamming graphs
    Gillespie, Neil I.
    Praeger, Cheryl E.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2013, 67 (03) : 385 - 393
  • [8] Hamming graphs and special LCD codes
    W. Fish
    J. D. Key
    E. Mwambene
    B. G. Rodrigues
    [J]. Journal of Applied Mathematics and Computing, 2019, 61 : 461 - 479
  • [9] Codes from incidence matrices and line graphs of Hamming graphs
    Fish, W.
    Key, J. D.
    Mwambene, E.
    [J]. DISCRETE MATHEMATICS, 2010, 310 (13-14) : 1884 - 1897
  • [10] CODES FROM THE INCIDENCE MATRICES AND LINE GRAPHS OF HAMMING GRAPHS Hk(n, 2) FOR k ≥ 2
    Key, Jennifer D.
    Fish, Washiela
    Mwambene, Eric
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2011, 5 (02) : 373 - 394