Measurement of high-Re turbulent pipe flow using single-pixel PIV

被引:0
|
作者
G. Oldenziel
S. Sridharan
J. Westerweel
机构
[1] Delft University of Technology,Deltares and Laboratory for Aero and Hydrodynamics
[2] Delft University of Technology,Laboratory for Aero and Hydrodynamics
来源
Experiments in Fluids | 2023年 / 64卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper are presented PIV measurements of turbulent pipe flow at bulk Reynolds numbers ReD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_D$$\end{document} between 3.4×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^5$$\end{document} and 6.9×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^5$$\end{document}. So-called single-pixel correlation is applied that yields a superior spatial resolution that is slightly larger than the equivalent size of a pixel in the flow. The location and shape of the averaged correlation peak give the mean velocity and normal and Reynolds stresses. A novel aspect of the single-pixel correlation approach is the extension to determine the 2-point spatial correlation of the velocity fluctuations and the spectrum of the longitudinal velocity fluctuations. Detailed results are presented for ReD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_D$$\end{document} = 4.98×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^5$$\end{document}, corresponding to a shear Reynolds number Reτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\tau$$\end{document} = 10.3×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document}103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}, with a spatial resolution in wall units of Δy+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta y^+$$\end{document} = 19.
引用
收藏
相关论文
共 50 条
  • [1] Measurement of high-Re turbulent pipe flow using single-pixel PIV
    Oldenziel, G.
    Sridharan, S.
    Westerweel, J.
    EXPERIMENTS IN FLUIDS, 2023, 64 (10)
  • [2] Accurate PIV measurement on slip boundary using single-pixel algorithm
    Li, Hongyuan
    Cao, Yufan
    Wang, Xiangyu
    Wan, Xia
    Xiang, Yaolei
    Yuan, Huijing
    Lv, Pengyu
    Duan, Huiling
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (05)
  • [3] Measurement of laminar, transitional and turbulent pipe flow using Stereoscopic-PIV
    C. W. H. van Doorne
    J. Westerweel
    Experiments in Fluids, 2007, 42 : 259 - 279
  • [4] Measurement of laminar, transitional and turbulent pipe flow using Stereoscopic-PIV
    van Doorne, C. W. H.
    Westerweel, J.
    EXPERIMENTS IN FLUIDS, 2007, 42 (02) : 259 - 279
  • [5] Convergence enhancement of single-pixel PIV with symmetric double correlation
    Avallone, Francesco
    Discetti, Stefano
    Astarita, Tommaso
    Cardone, Gennaro
    EXPERIMENTS IN FLUIDS, 2015, 56 (04)
  • [6] Convergence enhancement of single-pixel PIV with symmetric double correlation
    Francesco Avallone
    Stefano Discetti
    Tommaso Astarita
    Gennaro Cardone
    Experiments in Fluids, 2015, 56
  • [7] Reynolds stress estimation up to single-pixel resolution using PIV-measurements
    Sven Scharnowski
    Rainer Hain
    Christian J. Kähler
    Experiments in Fluids, 2012, 52 : 985 - 1002
  • [8] Reynolds stress estimation up to single-pixel resolution using PIV-measurements
    Scharnowski, Sven
    Hain, Rainer
    Kaehler, Christian J.
    EXPERIMENTS IN FLUIDS, 2012, 52 (04) : 985 - 1002
  • [9] Two level simulation of high-Re turbulent flows
    Kemenov, Konstantin
    Menon, Suresh
    Direct and Large-Eddy Simulation V, Proceedings, 2004, 9 : 49 - 56
  • [10] Single-pixel resolution ensemble correlation for micro-PIV applications
    Westerweel J.
    Geelhoed P.F.
    Lindken R.
    Experiments in Fluids, 2004, 37 (3) : 375 - 384