Unconditional superconvergence analysis of an energy dissipation property preserving nonconforming FEM for nonlinear BBMB equation

被引:0
|
作者
Shi, Dongyang [1 ,2 ]
Qi, Zhenqi [2 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 04期
基金
中国国家自然科学基金;
关键词
BBMB equation; Nonconforming Quasi-Wilson element; Energy dissipation scheme; Unconditional supercloseness and superconvergent error estimates; FINITE-ELEMENT-METHOD; MAHONY-BURGERS EQUATION; NUMERICAL-SOLUTION; ACCURACY ANALYSIS; ERROR ANALYSIS; GALERKIN FEMS; APPROXIMATION; CONVERGENCE;
D O I
10.1007/s40314-024-02724-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, an energy dissipation property preserving modified Crank-Nicolson (CN) fully-discrete scheme is developed and investigated with the nonconforming quadrilateral Quasi-Wilson element for nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation. Different from the so-called popular splitting technique used in the previous studies, the boundedness of numerical solution in the broken H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1$$\end{document}-norm is proved directly, which leads to the existence and uniqueness of the numerical solution can be testified strictly via the Brouwer fixed point theorem. Then, with the help of the special character of this element, that is, the consistency error can be estimated with order O(h2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h<^>2),$$\end{document} one order higher than its interpolation error, the unconditional supercloseness of order O(h2+tau 2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h<^>2+\tau <^>2)$$\end{document} on quadrilateral meshes are deduced rigorously without any restriction between mesh size h and time step tau.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau .$$\end{document} Further, through the interpolation post-processing technique, the unconditional global superconvergence estimate on quadrilateral meshes is acquired. Finally, some numerical experiments are conducted to confirm the theoretical analysis. It is shown that the proposed scheme has much better performance than the famous Wilson element. Here, we mention that the presented approach and analysis are also valid to some other known low order conforming and nonconforming finite elements.
引用
收藏
页数:23
相关论文
共 50 条