An adaptive mesh refinement algorithm for compressible two-phase flow in porous media

被引:0
|
作者
George Shu Heng Pau
John B. Bell
Ann S. Almgren
Kirsten M. Fagnan
Michael J. Lijewski
机构
[1] Lawrence Berkeley National Laboratory,Earth Science Division
[2] Lawrence Berkeley National Laboratory,Center of Computational Sciences and Engineering
[3] Lawrence Berkeley National Laboratory,National Energy Research Scientific Computing Center
来源
Computational Geosciences | 2012年 / 16卷
关键词
Adaptive mesh refinement; Compressible two-phase flow; Porous media; Sequential algorithm; 76S05; 65M08; 65M50;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a second-order accurate sequential algorithm for solving two-phase multicomponent flow in porous media. The algorithm incorporates an unsplit second-order Godunov scheme that provides accurate resolution of sharp fronts. The method is implemented within a block structured adaptive mesh refinement (AMR) framework that allows grids to dynamically adapt to features of the flow and enables efficient parallelization of the algorithm. We demonstrate the second-order convergence rate of the algorithm and the accuracy of the AMR solutions compared to uniform fine-grid solutions. The algorithm is then used to simulate the leakage of gas from a Liquified Petroleum Gas (LPG) storage cavern, demonstrating its capability to capture complex behavior of the resulting flow. We further examine differences resulting from using different relative permeability functions.
引用
收藏
页码:577 / 592
页数:15
相关论文
共 50 条
  • [1] An adaptive mesh refinement algorithm for compressible two-phase flow in porous media
    Pau, George Shu Heng
    Bell, John B.
    Almgren, Ann S.
    Fagnan, Kirsten M.
    Lijewski, Michael J.
    [J]. COMPUTATIONAL GEOSCIENCES, 2012, 16 (03) : 577 - 592
  • [2] Adaptive mesh refinement for compressible thermal flow in porous media
    Lovett, Sean
    Nikiforakis, Nikolaos
    Monmont, Franck
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 : 21 - 36
  • [3] An enhanced compressible two-phase flow model with detailed chemistry under the adaptive mesh refinement frame
    Xu, Sheng
    Jin, Xin
    Wen, Haocheng
    Wang, Bing
    [J]. PHYSICS OF FLUIDS, 2024, 36 (06)
  • [4] Slightly compressible and immiscible two-phase flow in porous media
    Saad, Mazen
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 15 : 12 - 26
  • [5] Homogenization of compressible two-phase two-component flow in porous media
    Amaziane, B.
    Pankratov, L.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 30 : 213 - 235
  • [6] A new formulation of immiscible compressible two-phase flow in porous media
    Amaziane, Brahim
    Jurak, Mladen
    [J]. COMPTES RENDUS MECANIQUE, 2008, 336 (07): : 600 - 605
  • [7] Homogenization of immiscible compressible two-phase flow in random porous media
    Amaziane, B.
    Pankratov, L.
    Piatnitski, A.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 305 : 206 - 223
  • [8] An efficient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkin method: Applications for the computation of compressible two-phase flows
    Papoutsakis, Andreas
    Sazhin, Sergei S.
    Begg, Steven
    Danaila, Ionut
    Luddens, Francky
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 363 : 399 - 427
  • [9] Triple mesh methods and their application to two-phase flow in porous media
    Adeyemi, Adedimeji A.
    Awotunde, Abeeb A.
    Patil, Shirish
    Mahmoud, Mohamed N.
    Sultan, Abdullah S.
    Mohanty, Kishore
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 212
  • [10] Adaptive mesh refinement and multilevel iteration for flow in porous media
    Hornung, RD
    Trangenstein, JA
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 136 (02) : 522 - 545