Perturbed asymptotically linear problems

被引:0
|
作者
Rossella Bartolo
Anna Maria Candela
Addolorata Salvatore
机构
[1] Politecnico di Bari,Dipartimento di Meccanica Matematica e Management
[2] Università degli Studi di Bari “Aldo Moro”,Dipartimento di Matematica
来源
关键词
Asymptotically linear elliptic problem; Essential value; Perturbed problem; Variational methods; Pseudo-genus; Resonant problem; 35J20; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to investigate the existence of solutions of the semilinear elliptic problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll} -\Delta u\ =\ p(x, u) + \varepsilon g(x, u)\quad {\rm in}\,\, \Omega, \\ u=0 \quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\,\,\,{\rm on}\,\, \partial\Omega, \end{array} \right. \quad\quad\quad(0.1) $$\end{document}where Ω is an open bounded domain of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^N}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon\in\mathbb{R}, p}$$\end{document} is subcritical and asymptotically linear at infinity, and g is just a continuous function. Even when this problem has not a variational structure on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^1_0(\Omega)}$$\end{document}, suitable procedures and estimates allow us to prove that the number of distinct critical levels of the functional associated to the unperturbed problem is “stable” under small perturbations, in particular obtaining multiplicity results if p is odd, both in the non-resonant and in the resonant case.
引用
收藏
页码:89 / 101
页数:12
相关论文
共 50 条