A logarithmic-quadratic proximal point scalarization method for multiobjective programming

被引:0
|
作者
Ronaldo Gregório
Paulo Roberto Oliveira
机构
[1] Federal Rural University of Rio de Janeiro,Technology and Languages Departament
[2] Federal University of Rio de Janeiro,Computing and Systems Engineering Department
来源
关键词
Proximal point algorithm; Scalar representations; Multiobjective programming;
D O I
暂无
中图分类号
学科分类号
摘要
We present a proximal point method to solve multiobjective programming problems based on the scalarization for maps. We build a family of convex scalar strict representations of a convex map F from Rn  to  Rm with respect to the lexicographic order on Rm and we add a variant of the logarithmic-quadratic regularization of Auslender, where the unconstrained variables in the domain of F are introduced in the quadratic term. The nonegative variables employed in the scalarization are placed in the logarithmic term. We show that the central trajectory of the scalarized problem is bounded and converges to a weak pareto solution of the multiobjective optimization problem.
引用
收藏
页码:281 / 291
页数:10
相关论文
共 50 条
  • [1] A logarithmic-quadratic proximal point scalarization method for multiobjective programming
    Gregorio, Ronaldo
    Oliveira, Paulo Roberto
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2011, 49 (02) : 281 - 291
  • [2] Variants for the logarithmic-quadratic proximal point scalarization method for multiobjective programming
    Castillo, Romulo
    Quintana, Clavel
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (06)
  • [3] An Introduction of a New Square Quadratic Proximal Point Scalarization Method for Multiobjective Programming
    Ou-yassine, Ali
    Krit, Salah-Ddine
    [J]. IAENG International Journal of Applied Mathematics, 2021, 51 (02)
  • [4] A logarithmic-quadratic proximal method for variational inequalities
    Auslender, A
    Teboulle, M
    Ben-Tiba, S
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) : 31 - 40
  • [5] A Logarithmic-Quadratic Proximal Method for Variational Inequalities
    Alfred Auslender
    Marc Teboulle
    Sami Ben-Tiba
    [J]. Computational Optimization and Applications, 1999, 12 : 31 - 40
  • [6] A new logarithmic-quadratic proximal method for nonlinear complementarity problems
    Bnouhachem, Abdellah
    Noor, Muhammad Aslam
    Khalfaoui, Mohamed
    Sheng Zhaohan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (02) : 695 - 706
  • [7] A scalarization proximal point method for quasiconvex multiobjective minimization
    H. C. F. Apolinário
    E. A. Papa Quiroz
    P. R. Oliveira
    [J]. Journal of Global Optimization, 2016, 64 : 79 - 96
  • [8] A scalarization proximal point method for quasiconvex multiobjective minimization
    Apolinario, H. C. F.
    Quiroz, E. A. Papa
    Oliveira, P. R.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (01) : 79 - 96
  • [9] A hybrid inexact Logarithmic-Quadratic Proximal method for nonlinear complementarity problems
    Xu, Ya
    He, Bingsheng
    Yuan, Xiaoming
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (01) : 276 - 287
  • [10] A Strictly Contractive Peaceman-Rachford Splitting Method with Logarithmic-Quadratic Proximal Regularization for Convex Programming
    Li, Min
    Yuan, Xiaoming
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2015, 40 (04) : 842 - 858