Generalized Polarization Modules

被引:0
|
作者
Héctor Blandin
机构
[1] Université du Québec à Montréal (UQÀM),Laboratoire de Combinatoire et d’informatique Mathématique (LaCIM)
来源
Annals of Combinatorics | 2017年 / 21卷
关键词
representations of the symmetric group ; polynomial representations of ; symmetric polynomials; diagonally symmetric polynomial; polarization operators; generalized polarization operators; polarization modules; Hilbert series; Frobenius characteristic; -exceptions; 05E05; 05E05; 20C30;
D O I
暂无
中图分类号
学科分类号
摘要
This work enrols the research line of M. Haiman on the Operator Theorem (the former Operator Conjecture). Given a Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{S}_n}$$\end{document}-stable family F of homogeneous polynomials in the variables xij\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_i j}$$\end{document} with 1≤i≤ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1 \leq i \leq \ell}$$\end{document} and 1≤j≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1 \leq j \leq n}$$\end{document}. We define the polarization module generated by the family F, as the smallest vector space closed under taking partial derivatives and closed under the action of polarization operators that contains F. These spaces are representations of the direct product Sn×GLℓ(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{S}_n \times GL_\ell(\mathbb{C})}$$\end{document}. We compute the graded Frobenius characteristic of these modules. We use some basic tools to study these spaces and give some in-depth calculations of low degree examples of a family or a single symmetric polynomial.
引用
收藏
页码:153 / 209
页数:56
相关论文
共 50 条
  • [1] Generalized Polarization Modules
    Blandin, Hector
    ANNALS OF COMBINATORICS, 2017, 21 (02) : 153 - 209
  • [2] GPQ modules and generalized Armendariz modules
    Zhao, Liang
    Zhu, Xiaosheng
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (04) : 637 - 648
  • [3] GENERALIZED FRACTIONS, BUCHSBAUM MODULES AND GENERALIZED COHEN-MACAULAY MODULES
    SHARP, RY
    ZAKERI, H
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1985, 98 (NOV) : 429 - 436
  • [4] Generalized ring of norms and generalized (ρ,Γ)-modules
    Andreatta, Fabrizio
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (04): : 599 - 647
  • [5] On Generalized Lifting Modules
    Zeng, Qingyi
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2012, 36 (05) : 757 - 768
  • [6] Generalized pure modules
    Dauns, J
    JOURNAL OF ALGEBRA, 2001, 242 (01) : 1 - 19
  • [7] MODULES OF GENERALIZED FRACTIONS
    SHARP, RY
    ZAKERI, H
    MATHEMATIKA, 1982, 29 (57) : 32 - 41
  • [8] ON GENERALIZED EXTENDING MODULES
    Kamal, M. A.
    Sayed, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2007, 76 (02): : 193 - 200
  • [9] Generalized quadratic modules
    Helmstetter J.
    Micali A.
    Revoy P.
    Afrika Matematika, 2012, 23 (1) : 53 - 84
  • [10] On generalized morphic modules
    Ceken, Secil
    Tekir, Unsal
    Koc, Suat
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2025, 33 (01): : 137 - 152