Unicyclic Graphs Possessing Kekulé Structures with Minimal Energy

被引:1
|
作者
Wen-Huan Wang
An Chang
Dong-Qiang Lu
机构
[1] Shanghai University,Department of Mathematics
[2] Fuzhou University,Department of Mathematics
[3] Shanghai Institute of Applied Mathematics and Mechanics,undefined
来源
关键词
unicyclic graph; perfect matching; Kekulé structure; minimal energy; 05C17; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
Unicyclic graphs possessing Kekulé structures with minimal energy are considered. Let n and l be the numbers of vertices of graph and cycle Cl contained in the graph, respectively; r and j positive integers. It is mathematically verified that for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \geqslant 6$$\end{document} and l = 2r + 1 or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=4j+2, S_n^4$$\end{document} has the minimal energy in the graphs exclusive of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n^3$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n^4$$\end{document} is a graph obtained by attaching one pendant edge to each of any two adjacent vertices of C4 and then by attaching n/2 − 3 paths of length 2 to one of the two vertices; \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n^3$$\end{document} is a graph obtained by attaching one pendant edge and n/2 − 2 paths of length 2 to one vertex of C3. In addition, we claim that for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6 \leqslant n \leqslant 12, S_n^4$$\end{document} has the minimal energy among all the graphs considered while for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 14, S_n^3$$\end{document} has the minimal energy.
引用
收藏
页码:311 / 320
页数:9
相关论文
共 50 条
  • [1] Unicyclic graphs possessing Kekule structures with minimal energy
    Wang, Wen-Huan
    Chang, An
    Lu, Dong-Qiang
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2007, 42 (03) : 311 - 320
  • [2] On the minimal energy of unicyclic Huckel molecular graphs possessing Kekule structures
    Cao, Yinmei
    Lin, Anhua
    Luo, Rong
    Zha, Xiaoya
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 913 - 919
  • [3] Unicyclic Graphs with Minimal Energy
    Yaoping Hou
    [J]. Journal of Mathematical Chemistry, 2001, 29 : 163 - 168
  • [4] Minimal Energy on Unicyclic Graphs
    Shengjin JI
    Yongke QU
    [J]. Journal of Mathematical Research with Applications, 2014, 34 (04) : 414 - 422
  • [5] Unicyclic graphs with minimal energy
    Hou, YP
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2001, 29 (03) : 163 - 168
  • [6] Unicyclic signed graphs with minimal energy
    Bhat, Mushtaq A.
    Pirzada, S.
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 226 : 32 - 39
  • [7] Minimal energy of unicyclic graphs of a given diameter
    Li, Feng
    Zhou, Bo
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (02) : 476 - 484
  • [8] On minimal energy and Hosoya index of unicyclic graphs
    Li, Shuchao
    Li, Xuechao
    Zhu, Zhongxun
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 61 (02) : 325 - 339
  • [9] Note on Conjugated Unicyclic Graphs with Minimal Energy
    Li, Xueliang
    Li, Yiyang
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 64 (01) : 141 - 144
  • [10] Unicyclic Huckel molecular graphs with minimal energy
    Wang, WH
    Chang, A
    Zhang, LZ
    Lu, DQ
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2006, 39 (01) : 231 - 241